• Title/Summary/Keyword: 학습율

Search Result 933, Processing Time 0.029 seconds

Biomedical Event Extraction based on Co-training wi th Co-occurrence Informal ion and Patterns (공기정보와 패턴 정보의 Co-training에 의한 바이오 이벤트 추출)

  • Chun, Hong-Woo;Hwang, Young-Sook;Rim, Hae-Chang
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2003.10a
    • /
    • pp.53-60
    • /
    • 2003
  • 생명과학 관련 문서에서의 이벤트 추출은 관련 연구자들의 연구에 많은 도움을 줄 수 있다. 기존의 연구에서는 주로 이벤트 동사에 대해 패턴을 정의한 후에 정의된 패턴에 의해서만 이벤트를 추출하고자하였다. 그러나 모든 패턴을 수동으로 정의하는 것은 너무 많은 비용이 들기 때문에 패턴을 자동 추출 또는 확장하는 방법이 필요하다. 또한 학습을 하기 위해서는 상당수의 학습 말뭉치가 있어야 하는데 그것 또한 충분하지 않은 실정이다. 본 논문에서는 초기 패턴에 의해 생성된 소량의 정답 이벤트로부터 학습한 후 공기정보와 패턴정보를 이용한 Co-training방법으로 패턴 확장 및 이벤트 추출을 시도하였다. 실험 결과, 이벤트 동사의 패턴 정보가 유용한 정보라는 것을 확인할 수 있었고, 후보 이벤트 내의 개체간 공기정보와 문법관계정보 또한 매우 중요한 정보라는 것을 새롭게 보일 수 있었다. GENIA 말뭉치에서 162개의 이벤트 동사에 대해 실험한 결과, 88.02%의 정확률, 79.25%의 재현율을 얻었다.

  • PDF

Development of DSP Process-based Artificial-Intelligent Power Quality Equipment for Single-phase Power System (DSP320C6713기반의 인공지능형 단상전력품질 진단기 개발연구)

  • Kwack, Sun-Geun;Chung, Gyo-Bum;Choi, Jae-Ho
    • Proceedings of the KIPE Conference
    • /
    • 2008.06a
    • /
    • pp.66-68
    • /
    • 2008
  • 본 논문은, 전력계통 내의 순시 파형으로부터 전력품질 자동진단을 위한 인공지능형 단상전력품질 진단기를 제안한다. 진단하는 전력품질은 전압강하(Sag), 전압상승(Swell), 과도현상(Transient) 및 전고조파함유율(THD) 이다. 인공지능 구현을 위해서 인공신경망 이론을 이용하였으며, 시뮬레이션 및 TI DSP 320C6713 사용하여 하드웨어를 구현하였다. 인공신경망의 학습을 위하여, 00변전소에서 일년(2007년)동안 측정한 데이터 중에서 Sag, Swell, Transient 특성이 명확히 관측된 150주기의 파형과 정상상태의 50주기 파형으로 구성된 총 200주기의 데이터를 사용하였다. 측정된 파형을 1/60[sec.]마다 256번 샘플링하여, FFT 및 웨이블렛 변환을 시행하여 얻어진 값을 인공신경망 학습에 사용하였다. 상용프로그램 PSIM을 이용하여 인공신경망 학습을 시뮬레이션하였으며, DSP 프로세서를 이용하여 하드웨어로 구현하여 검증하였다.

  • PDF

Improving the Performance of Fuzzy Classification Using Membership Function Learning (소속 함수 학습을 이용한 퍼지 분류의 성능 개선)

  • 곽동헌;김명원
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2004.04a
    • /
    • pp.462-465
    • /
    • 2004
  • 수치적인 데이터를 분류하기 위한 대표적인 방법은 퍼지 규칙을 사용하는 것이다. 하지만, 이러한 방법은 퍼지 소속 함수를 어떻게 정의하느냐에 따라 퍼지 분류의 성능이 크게 영향을 받는다는 문제점과 퍼지 규칙을 쉽게 이해하기 위해 가능한 퍼지 규칙의 수를 적게 유지해야한다는 문제점이 있다. 본 논문에서는 효과적이며 이해하기 쉬운 퍼지 규칙을 생성하기 위해 기울기 강하법을 기반으로 하는 소속 함수 학습 방법을 제안한다. 에러율을 감소하기 위해 Penalty 연산과 Reward 연산을 통해 소속 함수가 반복적으로 조절된다. 새로운 소속 함수는 Coverage 연산에 의해 생성된다. 또한 이해하기 쉬운 퍼지 규칙을 최적화하기 위해 학습된 소속 함수를 퍼지 결정 트리에 적용한다. 본 논문에서 제안한 알고리즘의 타당성을 확인하기 위해 벤치 마크 데이터인 Iris, Wisconsin Breast Cancer, Pima. Bupa 데이터를 이용하여 실험 결과를 보인다. 실험 결과를 통해 제안한 알고리즘이 기존의 C4.5와 FID 3.1 알고리즘보다 더 효과적이거나 비슷한 성능을 보임을 알 수 있다.

  • PDF

Prevention of Cheating On-line Test with Random Question (무작위 문항 제시에 의한 온라인 시험의 부정행위 방지)

  • 장재경;김호성
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2002.10d
    • /
    • pp.397-399
    • /
    • 2002
  • 가상교육이 활성화됨에 따라 많은 가상대학이 진행되고 있다. 이러한 가상대학운영에서 몇몇의 문제점이 제기되고 있는 것 중에서 학습자의 학습도를 평가하는 평가방법이 중요한 문제로 부각되고 있다. 이런 문제를 보완하고자 본 논문에서는 평가에서 나타날 수 있는 문제를 분석하고 오답 일치율, 신상정보 유사도, IP주소 유사도, 시험시간 유사도 등을 이용하여 담합 여부를 파악하고, 담합 행위를 방지하기 위하여 무작위 문항 제시에 의한 온라인 시험 방법으로 이를 개선하려는 시스템을 구현하였다. 그 결과 Threshold 간을 조절함으로 학습자의 담합 행위를 검출할 수 있었으며 무작위 문항 제시 방법에 적절한 시간 설정값을 조절함으로 기존 평가에서의 담합 행위를 80%정도 방지할 수 있었다.

  • PDF

Recognition of License Plate of Car in Vehicle Motion Images (도로 동영상에서 차량번호판 인식)

  • Lee, Hyang-Jeong;Lee, Hyo-Jong;Lee, Hoon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2002.04a
    • /
    • pp.775-778
    • /
    • 2002
  • 본 논문에서는 도로를 주행하는 차량영상으로부터 번호판의 인식에 대한 연구이다. 차량을 검출하기 위해 두 프레임의 차를 이용하여 도로상에서 차량을 분리하였고, 번호판 영역을 추출하기 위해 명암도 변화의 파형 곡선 결과에 임계값을 적용하여 번호판을 추출하였다. 번호판 영역 검출은 96.05%의 검출결과를 얻었으며, 차량의 번호판 문자인식은 신경망을 통하여 학습 시켰 그 성능은 잭나이프 기법을 통해 측정하였다. 학습데이터에 대해서는 99.85 비학습데이터에 대해서는 88.15%의 인식율을 보였다.

  • PDF

Initial codebook generation algorithm considering the number of member training vectors (소속 학습벡터 수를 고려한 초기 코드북 생성 알고리즘)

  • Kim HyungCheol;Cho CheHwang
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • spring
    • /
    • pp.259-262
    • /
    • 2002
  • 벡터양자화에서 주어진 학습벡터를 가장 잘 대표할 수 있는 코드벡터의 집합인 코드북을 구하는 것은 가장 중요한 문제이다. 이러한 코드북을 구하는 알고리즘 중에서 가장 대표적인 방법은 K-means 알고리즘으로 그 성능이 초기 코드북에 크게 의존한다는 문제점을 가지고 있어 여러 가지 초기 코드북을 설계하는 알고리즘이 제안되어 왔다. 본 논문에서는 splitting 방법을 이용한 수정된 초기 코드북 생성 알고리즘을 제안하고자 한다. 제안된 방법에서는 기존외 splitting 방법을 적용하여 초기 코드북을 생성하되, 미소분리 과정 시 학습벡터의 수렴 빈도가 가장 낮은 코드벡터를 제거하고 수렴 빈도가 가장 높은 코드벡터를 미소분리 하여 수렴 빈도가 가장 낮은 코드벡터와 대체해가며 초기 코드북을 설계 한다. 제안된 방법의 적용온 기존 방법에서 MSE(mean square error)의 감소율이 가장 작은 미소분리 과정에서 시작하여 원하는 코드북 크기를 얻을 때까지 반복한다. 제안된 방법으로 생성된 초기 코드북을 사용하여 K-means 알고리즘을 수행한 결과 기존의 splitting 방법으로 생성된 초기 코드북을 사용한 경우보다 코드북의 성능이 향상되었다.

  • PDF

Saliency Detection Based on Semi-Supervised Learning (준 지도 학습에 기반한 중요 객체 검출 방법)

  • Hwang, Insung;Lee, Sang Hwa;Park, Jae Sung;Cho, Nam Ik
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2015.07a
    • /
    • pp.169-172
    • /
    • 2015
  • 본 논문에서는 준 지도 학습에 기반한 중요 객체 검출 방법을 제안한다. 첫째, 색상과 공간 정보를 활용하여 이미지를 분할한 후, 분할된 영역을 색상의 유사도로 연결하여 그래프를 만든다. 둘째, 색 대비 및 가장자리 사전 지식을 활용하여 중요 객체에 해당하는 씨앗 노드와 배경에 해당하는 씨앗 노드를 추출한다. 끝으로, 중요 객체 및 배경 씨앗 노드를 이용하여 준 지도학습 기법에 적용함으로써 이미지 전체 노드의 중요도를 계산한다. 실험 결과, 제안한 알고리즘이 최신의 다른 알고리즘보다 높은 재현율 구간에서 높은 정밀도를 보임을 확인할 수 있고, 시각적으로도 좋은 성능을 보임을 확인할 수 있다.

  • PDF

Question Level Adjustment Methods Based on User Feedback for WBI (WBI(Web Based Instruction) 시스템에서 학습자 피드백 기반 문제수준 조절 방법)

  • Lim Il-Yong;Jeong Hae-Kyun;Yang Hyung-Jeong
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2006.06b
    • /
    • pp.244-246
    • /
    • 2006
  • 웹 기반 교육 시스템에서 문제 집합 구성은 주로 고정 출제 방식, 무작위 출제 방식, 난이도에 따른 출제 방식으로 이루어진다. 문제 집합의 구성 시 문제 은행에서 문제 난이도에 대한 객관성을 유지하는 것이 무엇보다 중요하다. 따라서 본 논문에서는 난이도를 재조정하는데 학습자들의 문제 풀이 결과를 반영하는 새로운 난이도 재조정 알고리즘을 제시한다. 본 논문에서 제안하는 학습자 피드백 기반 문제 수준 조절 방법은 개인 시험 결과, 그룹 시험 결과 그리고 개인의 특정 섹션 시험 결과를 함께 고려하여 난이도를 조절한다. 기존 알고리즘과 비교 분석한 결과 문제 난이도의 변화율 측면에서 보다 현실적인 문제 난이도 변화를 확인할 수 있었다.

  • PDF

A Automatic Learning of Syntactic Patterns by using Artificial Neural Network (신경망을 이용한 구문패턴의 자동 학습)

  • Lim, Heui-Seok;Han, Kun-Hee
    • Proceedings of the KAIS Fall Conference
    • /
    • 2006.11a
    • /
    • pp.245-249
    • /
    • 2006
  • 구문분석 말뭉치를 구축하는 작업은 문법 전문가의 많은 시간과 노력을 필요로 하기 때문에, 문법 전문가의 수작업을 감소시켜 줄 수 있는 방법이 연구되고 있다. 기존 방법 중 하나로 구문패턴을 사용하는 방법이 있는데, 이 방법은 두 개의 구문패턴이 완벽하게 일치하는 경우에만 구문패턴을 적용하는 방법이다. 본 논문은 신경망을 사용하여 구문패턴을 학습하고, 다시 구문분석 말뭉치를 구축하는데 학습된 신경망을 적용하는 방법을 사용한다. 소량의 말뭉치에서 실험한 결과, 본 논문에서 사용한 방법이 기존의 방법보다 12%이상의 수작업 감소율을 나타냈다.

  • PDF

Successive Optimization of Information Granules-based Fuzzy Neural Networks (정보 입자 기반 퍼지 뉴럴 네트워크의 연속적 최적화)

  • Park, Keon-Jun;Oh, Sung-Kwun;Kim, Hyun-Ki
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1815-1816
    • /
    • 2007
  • 본 논문에서는 데이터의 특성을 이용한 정보 입자 기반 퍼지 뉴럴 네트워크의 연속적 최적화를 제안한다. 데이터들간의 거리를 중심으로 C-Means 클러스터링 알고리즘을 이용하여 멤버쉽 함수를 정의하고 각 중심의 후반부 중심값을 이용하여 후반부 학습에 적용한다. 구조/파라미터 동정에 있어서 실수 코딩 기반 유전자 알고리즘을 이용하여 입력변수의 수, 입력 변수의 선택, 멤버쉽함수의 수, 후반부 형태와 같은 시스템의 입력 구조와 전반부 멤버쉽함수의 정점 및 학습율과 모멘텀 계수와 같은 파라미터를 최적으로 동정한다. 또한, 구조 연산과 파라미터 연산의 연속적 동조 방법을 이용하여 퍼지 뉴럴 네트워크를 최적화한다. 제안된 퍼지 뉴럴 네트워크는 삼각형 멤버쉽 함수를 이용하며, 후반부 추론에는 간략, 선형, 변형된 2차식을 이용한다. 제안된 퍼지 뉴럴 네트워크는 표준 모델로서 널리 사용되는 수치적인 예를 통하여 평가한다.

  • PDF