Proceedings of the Korea Multimedia Society Conference
/
2001.11a
/
pp.226-230
/
2001
오류 역전파 알고리즘을 영상 인식에 적용한 경우 은닉층의 노드 수를 경험적으로 설정하여야 하는 문제점이 있다. 따라서 본 논문에서는 오류 역전파 알고리즘의 은닉층 노드 수를 동적으로 설정하는 문제를 해결하기 위해 ART1을 수정하여 지도 학습 방법과 결합한 자가 생성 지도 학습 알고리즘을 제안하였다. 제안된 학습 알고리즘의 성능을 평가하기 위해 콘테이너 영상의 문자 및 숫자 인식 문제에 적용하여 기존의 오류 역전파 알고리즘과 성능을 비교, 분석하였다. 실험 결과에서는 제안된 자가 생성 지도 학습알고리즘이 기존의 오류 역전과 알고리즘보다 지역 최소화에 빠질 가능성이 감소하였으며 학습 시간과 수렴성이 개선되었을 뿐만 아니라, 영상 인식에 적용할 수 있는 가능성도 제시하였다.
SOM은 심전도 신호의 진단에 있어서 효과적인 Clustering을 해주는 신경망이라는 것을 몇몇의 실험을 통하여 알 수 있었다. [1] 하지만 출력노드의 크기를 임의로 지정해야 하는 문제점이 있고 일반적으로 출력층의 크기가 클수록 진단결과는 좋지만 인간시간은 오래걸린다는 단점이 있다. 따라서 진단능력과 학습속도 사이의 균형에 관련된 문제가 대두되게 된다. 본 논문에서는 이러한 문제점을 극복하고자 기존의 SOM 신경망의 단점을 보완하고자 GCS(Growing Cell Structures)를 이용한 심전도의 학습속도와 분류능력 사이의 효율성 개선 방안을 제안한다. 이 방범은 GCS를 이용하여 적절한 노드의 수를 찾아내는 것이다. 이를 이용한 심전도 진단의 실험을 통해 기존의 SOM이 할 수 없었던 자체적인 출력노드의 증감을 행함을 확인할 수 있었다. 또한 출력노드의 감소로 인해 연산량이 줄어 학습시간의 효율성이 증가하였다.
The node embedding technique for learning graph representation plays an important role in obtaining good quality results in graph mining. Until now, representative node embedding techniques have been studied for homogeneous graphs, and thus it is difficult to learn knowledge graphs with unique meanings for each edge. To resolve this problem, the conventional Triple2Vec technique builds an embedding model by learning a triple graph having a node pair and an edge of the knowledge graph as one node. However, the Triple2 Vec embedding model has limitations in improving performance because it calculates the relationship between triple nodes as a simple measure. Therefore, this paper proposes a feature extraction technique based on a graph convolutional neural network to improve the Triple2Vec embedding model. The proposed method extracts the neighborliness vector of the triple graph and learns the relationship between neighboring nodes for each node in the triple graph. We proves that the embedding model applying the proposed method is superior to the existing Triple2Vec model through category classification experiments using DBLP, DBpedia, and IMDB datasets.
Proceedings of the Korea Contents Association Conference
/
2010.05a
/
pp.3-4
/
2010
다층퍼셉트론의 구조를 결정할 때 중간층 노드 수를 정하는 부분이 성능에 큰 영향을 미친다. 이 논문에서는 처음에 중간층 노드수를 임의로 크게 설정한 다음, 학습의 진행에 따라 중간층 노드 수를 축소시키는 방법을 제안한다. 제안한 방법은 중간층 노드들 간의 상관관계를 활용한 방법으로 이전의 방법들보다 훨씬 간단하다.
Journal of the Korea Society of Computer and Information
/
v.5
no.2
/
pp.30-36
/
2000
The hidden node plays a role of the functional units that classifies the features of input pattern in the given question. Therefore, a neural network that consists of the number of a suitable optimum hidden node has be on the rise as a factor that has an important effect upon a result. However there is a problem that decides the number of hidden nodes based on back-propagation learning algorithm. If the number of hidden nodes is designated very small perfect learning is not done because the input pattern given cannot be classified enough. On the other hand, if designated a lot, overfitting occurs due to the unnecessary execution of operation and extravagance of memory point. So, the recognition rate is been law and the generality is fallen. Therefore, this paper suggests a method that decides the number of neural network node with feature information consisted of the parameter of learning algorithm. It excludes a node in the Pruning target, that has a maximum value among the feature value obtained and compares the average of the rest of hidden node feature value with the feature value of each hidden node, and then would like to improve the learning speed of neural network deciding the optimum structure of the multi-layer neural network as pruning the hidden node that has the feature value smaller than the average.
Proceedings of the Korean Information Science Society Conference
/
1999.10b
/
pp.422-424
/
1999
본 논문에서는 질감 특징과 신경회로망을 이용한 유방암조직영상의 분할 방법을 제안한다. 신경회로망의 입력 노드에 사용될 질감 특징을 얻기 위해 10개의 영상에 대해 각 영역(양성세포핵, 음성세포핵, 배경)에서 10개씩의 화소를 선택하고, 그 화소를 중심으로 하는 5$\times$5 영역 30개를 획득, 총 300개의 영역에 대해 R, G, B 각각의 밴드에서 18개의 질감특징을 추출한다. 54개의 입력노드, 28개의 은닉노드, 3개의 출력노드의 구조를 가진 신경회로망을 구성하고, 역전파 학습 알고리즘을 사용하여 신경회로망을 최대오차율이 10-3보다 작을 때까지 학습시킨다. 학습에 의해 획득되어진 분류기를 이용하여 유방암 조직 세포영상을 양성세포핵, 음성세포핵, 배경부분으로 자동 분할한다.
Hwang, Insung;Lee, Sang Hwa;Park, Jae Sung;Cho, Nam Ik
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2015.07a
/
pp.169-172
/
2015
본 논문에서는 준 지도 학습에 기반한 중요 객체 검출 방법을 제안한다. 첫째, 색상과 공간 정보를 활용하여 이미지를 분할한 후, 분할된 영역을 색상의 유사도로 연결하여 그래프를 만든다. 둘째, 색 대비 및 가장자리 사전 지식을 활용하여 중요 객체에 해당하는 씨앗 노드와 배경에 해당하는 씨앗 노드를 추출한다. 끝으로, 중요 객체 및 배경 씨앗 노드를 이용하여 준 지도학습 기법에 적용함으로써 이미지 전체 노드의 중요도를 계산한다. 실험 결과, 제안한 알고리즘이 최신의 다른 알고리즘보다 높은 재현율 구간에서 높은 정밀도를 보임을 확인할 수 있고, 시각적으로도 좋은 성능을 보임을 확인할 수 있다.
The Journal of Korean Institute of Communications and Information Sciences
/
v.24
no.9B
/
pp.1775-1784
/
1999
This paper proposes a method of removing unnecessary hidden nodes by a new cost function that evaluates the variance and the mean of hidden node outputs during training. The proposed cost function makes necessary hidden nodes be activated and unnecessary hidden nodes be constants. We can remove the constant hidden nodes without performance degradation. Using the CEDAR handwritten digit recognition, we have shown that the proposed method can remove the number of hidden nodes up to 37.2%, with higher recognition rate and shorter learning time.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2021.05a
/
pp.271-273
/
2021
본 논문은 이동노드의 클러스터링내에서 보다 효율적인클러스터링을 제공하고 유지하기위한 딥러닝의 선형회귀적 적응적 보정가중치에 따른 군집적 알고리즘을 제안한다. 대부분의 클러스터링 군집데이터를 처리함에 있어 상호관계에 따른 분류체계가 제공된다. 이러한 경우 이웃한 이동노드중 목적노드와는 연결가능성이 가장높은 이동노드를 클러스터내에서 중계노드로 선택해야 한다. 본 연구에서는 이러한 상황정보를 이해하고 동적이동노드간 속도와 방향속성정보간의 상관관계의 친밀도를 고려한 자율학습기반의 회귀적 모델에서 적응적 가중치에 따른 분류를 제시한다. 본 논문에서는 이러한 상황정보를 이해하고 클러스터링을 유지할 수 있는 자율학습기반의 적응적 가중치에 따른 딥러닝 모델을 제시 한다.
This paper presents an adaptive back propagation algorithm that update the learning parameter by the generated error, adaptively and varies the number of hidden layer node. This algorithm is expected to escaping from the local minimum and make the best environment for convergence to be change the number of hidden layer node. On the simulation tested this algorithm on two learning pattern. One was exclusive-OR learning and the other was $7{\times}5$ dot alphabetic font learning. In both examples, the probability of becoming trapped in local minimum was reduce. Furthermore, in alphabetic font learning, the neural network enhanced to learning efficient about 41.56%~58.28% for the conventional back propagation. and HNAD(Hidden Node Adding and Deleting) algorithm.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.