최근 인터넷 사용자의 급속한 증가와 함께 정보 표현 방식도 실세계와 유사한 3차원 공간으로 바뀌고 있다. 본 논문에서는 기존에 개발된 수화 편집기와 수화학습 시스템에서의 수화 동작의 편집 및 수화 학습의 효율을 높이기 위하여 frame 단위의 동작처리를 action 단위로 바꾸어 처리하도록 개선하였다. 개선된 수화 편집기와 수화학습 시스템은 VRML 뷰어와 애플릿간의 자료 이동이 줄어들어 처리 속도의 향상을 가져왔고 자연스러운 수화 동작 구현이 가능하게 되었다.
The Journal of Korean Association of Computer Education
/
v.19
no.2
/
pp.61-71
/
2016
The purpose of this study was to identify problems of usability and to improve an interface in the digital textbook for leaner's leading to self-directed learning. To address those goals, the theory of affordance, which was related to affordance as leading to behavior, was applied for analyzing the user interface of digital textbook. Also, 10 students, 4th grade elementary school, were participated in the study. Participants were reported affordance's problems of digital textbook through Human Computer Interaction. As a result, some affordance's problems of the digital textbook were found out as follow; difficulty of page clicking, too small touch button, confusing the button, and, need to specific guidance. Based on the result, some suggestions were recommended to improve usability of digital textbook.
This paper aims to present the way to bring about significant results through performance improvement of learning algorithm in the research applying to machine learning. Research papers showing the results from machine learning methods were collected as data for this case study. In addition, suitable machine learning methods for each field were selected and suggested in this paper. As a result, SVM for engineering, decision-making tree algorithm for medical science, and SVM for other fields showed their efficiency in terms of their frequent use cases and classification/prediction. By analyzing cases of machine learning application, general characterization of application plans is drawn. Machine learning application has three steps: (1) data collection; (2) data learning through algorithm; and (3) significance test on algorithm. Performance is improved in each step by combining algorithm. Ways of performance improvement are classified as multiple machine learning structure modeling, $+{\alpha}$ machine learning structure modeling, and so forth.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2000.11a
/
pp.93-96
/
2000
본 논문에서는 SVM의 학습성 개선을 위해 모멘트와 kernel-adatron 기법이 조합된 하이브리드 학습알고리즘을 제안하였다. 제안된 학습알고리즘은 SVM의 학습기법인 기울기상승법에서 발생하는 최적해로의 수렴에 따른 발진을 억제하여 그 수렴속도를 좀 더 개선시키는 모멘트의 장점과 비선형 특징공간에서의 동작과 구현의 용이성을 가진 kernel-adatron 알고리즘의 장점을 그대로 살리는 것이다. 제안된 알고리즘을 비선형 함수 회귀에 적용해 본 결과 학습속도에 있어서 QP와 기존의 kernel-adatron 알고리즘보다 더 우수한 성능이 있음을 확인하였다
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2004.10a
/
pp.549-552
/
2004
본 논문에서는 반도체의 Wafer ID 문자인식을 위해 기존의 오류 역전파 학습알고리즘을 개선하여 최적의 학습 학습 조건에 관해 연구하였다. 결과, 오류 역전파 학습알고리즘의 학습 최적 조건은 은닉층수는 1층, n값은 0.6 이상, 은닉층 노드수는 10개일 때 99%의 높은 인식률을 보였다 본 논문에서 제안하는 최적조건물 사용함으로써 기존의 오류역전파 학습 알고리즘이 가진 문제점을 해결할 수 있었다.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
v.9
no.1
/
pp.447-452
/
2005
기존의 단층 퍼셉트론은 출력 노드가 선형 분리 가능한 패턴들만을 분류할 수 있고 Exclusive OR와 같은 비선형 문제에 대해서는 분류할 수 없는 단점이 있다. 그러나 퍼지 단층 퍼셉트론은 퍼지소속 함수(fuzzy membership function)를 적용하여 단층 구조로 Exclusive OR 문제와 같은 고전적인 문제를 개선하였다. 그러나 퍼지 단층 퍼셉트론은 기존의 단층 퍼셉트론과 마찬가지로 결정 경계선이 진동하는 경우가 생기며 초기 가중치의 범위와 학습률에 따라 수렴성이 매우 낮아지는 단점이 있다. 따라서 본 논문에서는 바이어스항을 도입하여 결정 경계선이 진동하는 것을 방지하여 수렴성을 개선시키고 선형 활성화 함수를 제안하고 학습률과 모멘텀 개념을 도입하여 학습 시간을 단축시키는 개선된 퍼지 단층 퍼셉트론 알고리즘을 제안한다. 제안된 방법과 퍼지 단층 퍼셉트론간의 학습 성능을 분석하기 위하여 인공 신경망에서 벤치마크로 사용되는 exclusive OR 문제와 문자 패턴 분류에 적용하여 epoch 수와 수렴성을 비교한 결과, 제안된 방법이 기존의 퍼지 단층 퍼셉트론보다 학습 시간이 적게 소요되고 수렴성이 개선된 것을 확인하였다.
It takes quite amount of time to study a board game because there are many game characters and many state spaces are exist for board games. Therefore, game must do learning long. But, there is weakness with reinforcement learning. On Learning early, the learning speed becomes slow. If there were equal result that both are considered to be best ones during the course of learning stage, Heuristic which utilizes learning of problem area of Jul-Gonu was used to improve the speed of learning. To compare a normal character to an improved one, a board game was created, and then they fought against each other. As a result, improved character's ability was improved on learning speed.
Proceedings of the Korean Society of Computer Information Conference
/
2008.06a
/
pp.149-154
/
2008
FCM 기반 RBF 네트워크는 서로 다른 학습 구조가 결합된 혼합형 모델로서, 입력층과 중간층의 학습 구조는 FCM 알고리즘을 적용하고, 중간층과 출력층 사이의 학습 구조는 Max_Min 신경망을 적용한다. 입력층과 중간층의 학습시 입력벡터와 중간층의 노드중에서 중심과 입력벡터간의 가장 가까운 노드를 승자 노드로 선택하여 출력층으로 전달한다. 그리고 중간층과 출력층 사이의 학습 구조는 Max_Min 신경망을 적용하여 중간층의 승자 뉴런이 출력층의 입력벡터로 적용한다. 하지만 많은 패턴이 입력벡터로 제시될 경우 학습 성능이 저하되는 단점이 있다. 따라서 본 논문에서는 중간층과 출력층의 학습 구조인 Max_Min 알고리즘의 학습 성능을 개선시키기 위해 퍼지 제어시스템을 이용하여 학습률을 동적으로 조정하는 퍼지 제어 기법을 이용한 FCM 기반 RBF 네트워크를 제안한다. 제안된 방법의 학습 성능을 평가하기 위하여 컨테이너 영상에서 추출한 숫자, 영문 식별자를 학습 데이터로 적용한 결과, 기존의 ART2 기반 RBF 네트워크보다 학습 시간이 적게 소요되고, 학습의 수렴성이 개선된 것을 확인하였다.
Proceedings of the Korean Society of Computer Information Conference
/
2009.01a
/
pp.35-40
/
2009
FCM 알고리즘은 입력 벡터와 각 클러스터의 유클리드 거리를 이용하여 구해진 소속도만를 비교하여 데이터를 분류하기 때문에 클러스터링 된 공간에서의 데이터들의 분포에 따라 바람직하지 못한 클러스터링 결과를 보일 수 있다. 이러한 문제점을 개선하기 위해 대칭적 성질을 이용하는 대칭성 측도에 퍼지 이론을 적용하여 군집간의 거리에 따른 변화와 군집 중심의 위치, 그리고 군집 형태에 따라 영향을 덜 받는 개선된 FCM이 제안되었다. 본 논문에서는 효과적으로 패턴을 분류하기 위해 개선된 FCM 알고리즘을 적용한 개선된 하이브리드 네트워크를 제안한다. 제안된 하이브리드 네트워크는 개선된 FCM 알고리즘을 입력층과 중간층의 학습구조 적용하고 중간층과 출력층의 학습구조는 일반화된 델타학습법을 적용한다. 제안된 방법의 인식성능을 평가하기 위해 2차원 좌표평면 상의 데이터를 기존의 Max_Min 신경망을 이용한 FCM 기반 RBF 네트워크와 FCM 기반 RBF 네트워크, HCM 기반 네트워크와 제안된 방법 간의 학습 및 인식 성능을 비교 및 분석하였다.
Park, Gunwoo;Hong, Sung-Moon;Kim, Hyunha;Doh, Kyung-Goo
Journal of Software Assessment and Valuation
/
v.15
no.1
/
pp.43-53
/
2019
BigCloneBench has recently been used for performance evaluation of code clone detection tool using machine learning. However, since BigCloneBench is not a benchmark that is optimized for machine learning, incorrect learning data can be created. In this paper, we have shown through experiments using machine learning that the set of Type-4 clone methods provided by BigCloneBench can additionally be found. Experimental results using Tree-Based Convolutional Neural Network show that our proposed method is effective in improving BigCloneBench's dataset.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.