• Title/Summary/Keyword: 학습개선

Search Result 3,355, Processing Time 0.038 seconds

An Improved Sign Language Learning System using VRML action data (VRML의 action 데이터를 이용한 개선된 수화학습 시스템)

  • Lee, Soo-Hyun;Kim, Jin-Soo
    • Annual Conference of KIPS
    • /
    • 2000.04a
    • /
    • pp.1062-1066
    • /
    • 2000
  • 최근 인터넷 사용자의 급속한 증가와 함께 정보 표현 방식도 실세계와 유사한 3차원 공간으로 바뀌고 있다. 본 논문에서는 기존에 개발된 수화 편집기와 수화학습 시스템에서의 수화 동작의 편집 및 수화 학습의 효율을 높이기 위하여 frame 단위의 동작처리를 action 단위로 바꾸어 처리하도록 개선하였다. 개선된 수화 편집기와 수화학습 시스템은 VRML 뷰어와 애플릿간의 자료 이동이 줄어들어 처리 속도의 향상을 가져왔고 자연스러운 수화 동작 구현이 가능하게 되었다.

  • PDF

A Study about Improvement of Digital Textbook Interface based on Affordance Theory in the Context of HCI (HCI 관점에서 어포던스 이론에 근거한 디지털교과서 사용자 인터페이스 개선 연구)

  • Hwang, YunJa;Sung, EunMo
    • The Journal of Korean Association of Computer Education
    • /
    • v.19 no.2
    • /
    • pp.61-71
    • /
    • 2016
  • The purpose of this study was to identify problems of usability and to improve an interface in the digital textbook for leaner's leading to self-directed learning. To address those goals, the theory of affordance, which was related to affordance as leading to behavior, was applied for analyzing the user interface of digital textbook. Also, 10 students, 4th grade elementary school, were participated in the study. Participants were reported affordance's problems of digital textbook through Human Computer Interaction. As a result, some affordance's problems of the digital textbook were found out as follow; difficulty of page clicking, too small touch button, confusing the button, and, need to specific guidance. Based on the result, some suggestions were recommended to improve usability of digital textbook.

A Case Study on Machine Learning Applications and Performance Improvement in Learning Algorithm (기계학습 응용 및 학습 알고리즘 성능 개선방안 사례연구)

  • Lee, Hohyun;Chung, Seung-Hyun;Choi, Eun-Jung
    • Journal of Digital Convergence
    • /
    • v.14 no.2
    • /
    • pp.245-258
    • /
    • 2016
  • This paper aims to present the way to bring about significant results through performance improvement of learning algorithm in the research applying to machine learning. Research papers showing the results from machine learning methods were collected as data for this case study. In addition, suitable machine learning methods for each field were selected and suggested in this paper. As a result, SVM for engineering, decision-making tree algorithm for medical science, and SVM for other fields showed their efficiency in terms of their frequent use cases and classification/prediction. By analyzing cases of machine learning application, general characterization of application plans is drawn. Machine learning application has three steps: (1) data collection; (2) data learning through algorithm; and (3) significance test on algorithm. Performance is improved in each step by combining algorithm. Ways of performance improvement are classified as multiple machine learning structure modeling, $+{\alpha}$ machine learning structure modeling, and so forth.

Hybrid Algorithm for Efficient learing of Regression Support Vector Machine (회귀용 Support Vector Machine의 효율적인 학습을 위한 조합형 알고리즘)

  • 조용현;박창환;박용수
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2000.11a
    • /
    • pp.93-96
    • /
    • 2000
  • 본 논문에서는 SVM의 학습성 개선을 위해 모멘트와 kernel-adatron 기법이 조합된 하이브리드 학습알고리즘을 제안하였다. 제안된 학습알고리즘은 SVM의 학습기법인 기울기상승법에서 발생하는 최적해로의 수렴에 따른 발진을 억제하여 그 수렴속도를 좀 더 개선시키는 모멘트의 장점과 비선형 특징공간에서의 동작과 구현의 용이성을 가진 kernel-adatron 알고리즘의 장점을 그대로 살리는 것이다. 제안된 알고리즘을 비선형 함수 회귀에 적용해 본 결과 학습속도에 있어서 QP와 기존의 kernel-adatron 알고리즘보다 더 우수한 성능이 있음을 확인하였다

  • PDF

Semiconductor Wafer ID Recognition System using an Improved Neural Network (개선된 신경회로망을 이용한 반도체 Wafer ID 인식시스템)

  • 조영임
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2004.10a
    • /
    • pp.549-552
    • /
    • 2004
  • 본 논문에서는 반도체의 Wafer ID 문자인식을 위해 기존의 오류 역전파 학습알고리즘을 개선하여 최적의 학습 학습 조건에 관해 연구하였다. 결과, 오류 역전파 학습알고리즘의 학습 최적 조건은 은닉층수는 1층, n값은 0.6 이상, 은닉층 노드수는 10개일 때 99%의 높은 인식률을 보였다 본 논문에서 제안하는 최적조건물 사용함으로써 기존의 오류역전파 학습 알고리즘이 가진 문제점을 해결할 수 있었다.

  • PDF

Enhanced Fuzzy Single Layer Perceptron (개선된 퍼지 단층 퍼셉트론)

  • Lee, Jae-Eon;Her, Joo-Yong;Kim, Kwang-Baek
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.1
    • /
    • pp.447-452
    • /
    • 2005
  • 기존의 단층 퍼셉트론은 출력 노드가 선형 분리 가능한 패턴들만을 분류할 수 있고 Exclusive OR와 같은 비선형 문제에 대해서는 분류할 수 없는 단점이 있다. 그러나 퍼지 단층 퍼셉트론은 퍼지소속 함수(fuzzy membership function)를 적용하여 단층 구조로 Exclusive OR 문제와 같은 고전적인 문제를 개선하였다. 그러나 퍼지 단층 퍼셉트론은 기존의 단층 퍼셉트론과 마찬가지로 결정 경계선이 진동하는 경우가 생기며 초기 가중치의 범위와 학습률에 따라 수렴성이 매우 낮아지는 단점이 있다. 따라서 본 논문에서는 바이어스항을 도입하여 결정 경계선이 진동하는 것을 방지하여 수렴성을 개선시키고 선형 활성화 함수를 제안하고 학습률과 모멘텀 개념을 도입하여 학습 시간을 단축시키는 개선된 퍼지 단층 퍼셉트론 알고리즘을 제안한다. 제안된 방법과 퍼지 단층 퍼셉트론간의 학습 성능을 분석하기 위하여 인공 신경망에서 벤치마크로 사용되는 exclusive OR 문제와 문자 패턴 분류에 적용하여 epoch 수와 수렴성을 비교한 결과, 제안된 방법이 기존의 퍼지 단층 퍼셉트론보다 학습 시간이 적게 소요되고 수렴성이 개선된 것을 확인하였다.

  • PDF

An improvement of the learning speed through Influence Map on Reinforcement Learning (영향력분포도를 이용한 강화학습의 학습속도개선)

  • Shin, Yong-Woo
    • Journal of Korea Game Society
    • /
    • v.17 no.4
    • /
    • pp.109-116
    • /
    • 2017
  • It takes quite amount of time to study a board game because there are many game characters and many state spaces are exist for board games. Therefore, game must do learning long. But, there is weakness with reinforcement learning. On Learning early, the learning speed becomes slow. If there were equal result that both are considered to be best ones during the course of learning stage, Heuristic which utilizes learning of problem area of Jul-Gonu was used to improve the speed of learning. To compare a normal character to an improved one, a board game was created, and then they fought against each other. As a result, improved character's ability was improved on learning speed.

FCM-based RBF Network Using Fuzzy Control Method (퍼지 제어 기법을 이용한 FCM 기반 RBF 네트워크)

  • Kim, Tae-Hyung;Park, Choong-Shik;Kim, Kwang-Baek
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2008.06a
    • /
    • pp.149-154
    • /
    • 2008
  • FCM 기반 RBF 네트워크는 서로 다른 학습 구조가 결합된 혼합형 모델로서, 입력층과 중간층의 학습 구조는 FCM 알고리즘을 적용하고, 중간층과 출력층 사이의 학습 구조는 Max_Min 신경망을 적용한다. 입력층과 중간층의 학습시 입력벡터와 중간층의 노드중에서 중심과 입력벡터간의 가장 가까운 노드를 승자 노드로 선택하여 출력층으로 전달한다. 그리고 중간층과 출력층 사이의 학습 구조는 Max_Min 신경망을 적용하여 중간층의 승자 뉴런이 출력층의 입력벡터로 적용한다. 하지만 많은 패턴이 입력벡터로 제시될 경우 학습 성능이 저하되는 단점이 있다. 따라서 본 논문에서는 중간층과 출력층의 학습 구조인 Max_Min 알고리즘의 학습 성능을 개선시키기 위해 퍼지 제어시스템을 이용하여 학습률을 동적으로 조정하는 퍼지 제어 기법을 이용한 FCM 기반 RBF 네트워크를 제안한다. 제안된 방법의 학습 성능을 평가하기 위하여 컨테이너 영상에서 추출한 숫자, 영문 식별자를 학습 데이터로 적용한 결과, 기존의 ART2 기반 RBF 네트워크보다 학습 시간이 적게 소요되고, 학습의 수렴성이 개선된 것을 확인하였다.

  • PDF

Enhanced FCM Based Hybrid Network for Effective Pattern Classification (효과적인 패턴분류를 위한 개선된 FCM 기반 하이브리드 네트워크)

  • Kim, Tae-Hyung;Cha, Eui-Young;Kim, Kwang-Baek
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2009.01a
    • /
    • pp.35-40
    • /
    • 2009
  • FCM 알고리즘은 입력 벡터와 각 클러스터의 유클리드 거리를 이용하여 구해진 소속도만를 비교하여 데이터를 분류하기 때문에 클러스터링 된 공간에서의 데이터들의 분포에 따라 바람직하지 못한 클러스터링 결과를 보일 수 있다. 이러한 문제점을 개선하기 위해 대칭적 성질을 이용하는 대칭성 측도에 퍼지 이론을 적용하여 군집간의 거리에 따른 변화와 군집 중심의 위치, 그리고 군집 형태에 따라 영향을 덜 받는 개선된 FCM이 제안되었다. 본 논문에서는 효과적으로 패턴을 분류하기 위해 개선된 FCM 알고리즘을 적용한 개선된 하이브리드 네트워크를 제안한다. 제안된 하이브리드 네트워크는 개선된 FCM 알고리즘을 입력층과 중간층의 학습구조 적용하고 중간층과 출력층의 학습구조는 일반화된 델타학습법을 적용한다. 제안된 방법의 인식성능을 평가하기 위해 2차원 좌표평면 상의 데이터를 기존의 Max_Min 신경망을 이용한 FCM 기반 RBF 네트워크와 FCM 기반 RBF 네트워크, HCM 기반 네트워크와 제안된 방법 간의 학습 및 인식 성능을 비교 및 분석하였다.

  • PDF

Improvement of BigCloneBench Using Tree-Based Convolutional Neural Network (트리 기반 컨볼루션 신경망을 이용한 BigCloneBench 개선)

  • Park, Gunwoo;Hong, Sung-Moon;Kim, Hyunha;Doh, Kyung-Goo
    • Journal of Software Assessment and Valuation
    • /
    • v.15 no.1
    • /
    • pp.43-53
    • /
    • 2019
  • BigCloneBench has recently been used for performance evaluation of code clone detection tool using machine learning. However, since BigCloneBench is not a benchmark that is optimized for machine learning, incorrect learning data can be created. In this paper, we have shown through experiments using machine learning that the set of Type-4 clone methods provided by BigCloneBench can additionally be found. Experimental results using Tree-Based Convolutional Neural Network show that our proposed method is effective in improving BigCloneBench's dataset.