• 제목/요약/키워드: 학습강화

검색결과 1,596건 처리시간 0.037초

관계형 강화 학습을 위한 도메인 지식의 효과적인 활용 (Effective Utilization of Domain Knowledge for Relational Reinforcement Learning)

  • 강민교;김인철
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제11권3호
    • /
    • pp.141-148
    • /
    • 2022
  • 최근 들어 강화 학습은 심층 신경망 기술과 결합되어 바둑, 체스와 같은 보드 게임, Atari, StartCraft와 같은 컴퓨터 게임, 로봇 물체 조작 작업 등과 같은 다양한 분야에서 매우 놀라운 성공을 거두었다. 하지만 이러한 심층 강화 학습은 행동, 상태, 정책 등을 모두 벡터 형태로 표현한다. 따라서 기존의 심층 강화 학습은 학습된 정책의 해석 가능성과 일반성에 제한이 있고, 도메인 지식을 학습에 효과적으로 활용하기도 어렵다는 한계성이 있다. 이러한 한계점들을 해결하기 위해 제안된 새로운 관계형 강화 학습 프레임워크인 dNL-RRL은 센서 입력 데이터와 행동 실행 제어는 기존의 심층 강화 학습과 마찬가지로 벡터 표현을 이용하지만, 행동, 상태, 그리고 학습된 정책은 모두 논리 서술자와 규칙들로 나타내는 관계형 표현을 이용한다. 본 논문에서는 dNL-RRL 관계형 강화 학습 프레임워크를 이용하여 제조 환경 내에서 운송용 모바일 로봇을 위한 행동 정책 학습을 수행하는 효과적인 방법을 제시한다. 특히 본 연구에서는 관계형 강화 학습의 효율성을 높이기 위해, 인간 전문가의 사전 도메인 지식을 활용하는 방안들을 제안한다. 여러 가지 실험들을 통해, 본 논문에서 제안하는 도메인 지식을 활용한 관계형 강화 학습 프레임워크의 성능 개선 효과를 입증한다.

복잡계 네트워크를 이용한 강화 학습에서의 환경 표현 (World Representation Using Complex Network for Reinforcement Learning)

  • 이승준;장병탁
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2004년도 봄 학술발표논문집 Vol.31 No.1 (B)
    • /
    • pp.622-624
    • /
    • 2004
  • 강화 학습(Reinforcement Learning)을 실제 문제에 적용하는 데 있어 가장 큰 문제는 차원성의 저주(Curse of dimensionality)였다 문제가 커짐에 따라 목적을 이루기 위해서 더 많은 단계의 판단이 필요하고 이에 따라 문제의 해결이 지수적으로 어려워지게 된다. 이를 해결하기 위해 문제를 여러 단계로 나누어 단계별로 학습하는 계층적 강화 학습(Hierarchical Reinforcement Learning)이 제시된 바 있다 하지만 대부분의 계층적 강화 학습 방법들은 사전에 문제의 구조를 아는 것을 전제로 하며 큰 사이즈의 문제를 간단히 표현할 방법을 제시하지 않는다. 따라서 이들 방법들도 실제적인 문제에 바로 적용하기에는 적합하지 않다. 최근 이루어진 복잡계 네트워크(Complex Network)에 대한 연구에 착안하여 본 논문은 자기조직화하는 생장 네트워크(Self organizing growing network)를 기반으로 한 간단한 환경 표현 모델을 사용하는 강화 학습 알고리즘을 제안한다 네트웍은 복잡계 네트웍이 갖는 성질들을 유지하도록 자기 조직화되고, 노드들 간의 거리는 작은 세상 성질(Small World Property)에 따라 전체 네트웍의 큰 사이즈에 비해 짧게 유지된다. 즉 판단해야할 단계의 수가 적게 유지되기 때문에 이 방법으로 차원성의 저주를 피할 수 있다.

  • PDF

심층 강화학습 기술 동향 (Research Trends on Deep Reinforcement Learning)

  • 장수영;윤현진;박노삼;윤재관;손영성
    • 전자통신동향분석
    • /
    • 제34권4호
    • /
    • pp.1-14
    • /
    • 2019
  • Recent trends in deep reinforcement learning (DRL) have revealed the considerable improvements to DRL algorithms in terms of performance, learning stability, and computational efficiency. DRL also enables the scenarios that it covers (e.g., partial observability; cooperation, competition, coexistence, and communications among multiple agents; multi-task; decentralized intelligence) to be vastly expanded. These features have cultivated multi-agent reinforcement learning research. DRL is also expanding its applications from robotics to natural language processing and computer vision into a wide array of fields such as finance, healthcare, chemistry, and even art. In this report, we briefly summarize various DRL techniques and research directions.

농구 게임에서 상태 정규화 및 Dense 보상 기반 강화 학습 기법 (State Normalization and Dense Reward Based Reinforcement Learning Method in Basketball Game.)

  • 최태혁;조경은
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2022년도 추계학술발표대회
    • /
    • pp.475-477
    • /
    • 2022
  • 최근 강화 학습을 적용한 게임 AI 에 대한 연구가 활발히 진행되고 있다. 하지만 대부분 상용게임은 유한 상태 머신(Finite State Machine, FSM)을 이용한 스크립트 기반 AI 를 사용하기 때문에 복잡한 환경의 게임에서 불안정한 상태로 인해 적절한 강화 학습의 수행이 어렵다. 따라서 본 논문에서는 상용 게임 강화 학습 적용을 위하여 상태 정규화 및 Dense 보상 기반 강화 학습 기법을 제안한다. 제안한 기법을 상용 농구 게임에 적용하고 학습된 모델의 성능을 기존 FSM 기반 AI 와 비교를 통해 성능이 약 80% 증가한 결과를 확인하였다.

FlexSim 소프트웨어를 이용한 강화학습 기반 작업 할당 모형 개발 (Developing Reinforcement Learning based Job Allocation Model by Using FlexSim Software)

  • 박진성;김준우
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2023년도 제67차 동계학술대회논문집 31권1호
    • /
    • pp.311-313
    • /
    • 2023
  • 병렬 기계 작업장에서 자원을 효율적으로 활용하기 위해서는 처리할 작업을 적절한 기계에 할당해야 한다. 특정 작업을 처리할 기계를 선택할 때 휴리스틱을 사용할 수도 있으나, 특정 작업장에 맞춤화된 휴리스틱을 개발하는 것은 쉽지 않다. 반면, 본 논문에서는 이종 병렬 기계 작업장을 위한 작업 할당 모형을 개발하는데 강화학습을 응용하고자 한다. 작업 할당 모형을 학습하는데 필요한 에피소드들은 상용 시뮬레이션 소프트웨어인 FlexSim을 이용하여 생성하였다. 아울러, stable-baseline3 라이브러리를 이용하여 강화학습 알고리즘을 생성된 에피소드들에 적용하였다. 실험 결과를 통해 시뮬레이션과 강화학습이 작업장 운영관리에 유용함을 알 수 있었다.

  • PDF

강화학습을 사용한 연관성 피드백 (Relative Feedback with Reinforcement Learning)

  • 이승준;장병탁
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2002년도 봄 학술발표논문집 Vol.29 No.1 (B)
    • /
    • pp.280-282
    • /
    • 2002
  • 본 논문은 웹 문서 여과시 사용자 모델링을 위해 사용되는 연관성 피드백 방법을 강화 학습 프레임웍에서 분석하고 강화학습 기반의 새로운 연관성 피드백 알고리즘을 제안한다. 제안된 방법은 강화 학습 프레임책상에서 기존의 방법을 일반화한 것으로 기존의 연관성 피드백 방법이 현재의 프로파일만을 상태로 사용하는 데 비해 과거 history부터 얻는 추가 정보를 사용하는 방법이다

  • PDF

목표지향적 강화학습 시스템 (Goal-Directed Reinforcement Learning System)

  • 이창훈
    • 한국인터넷방송통신학회논문지
    • /
    • 제10권5호
    • /
    • pp.265-270
    • /
    • 2010
  • 강화학습(reinforcement learning)은 동적 환경과 시행-착오를 통해 상호 작용하면서 학습을 수행한다. 그러므로 동적 환경에서 TD-학습과 TD(${\lambda}$)-학습과 같은 강화학습 방법들은 전통적인 통계적 학습 방법보다 더 빠르게 학습을 할 수 있다. 그러나 제안된 대부분의 강화학습 알고리즘들은 학습을 수행하는 에이전트(agent)가 목표 상태에 도달하였을 때만 강화 값(reinforcement value)이 주어지기 때문에 최적 해에 매우 늦게 수렴한다. 본 논문에서는 미로 환경(maze environment)에서 최단 경로를 빠르게 찾을 수 있는 강화학습 방법(GORLS : Goal-Directed Reinforcement Learning System)을 제안하였다. GDRLS 미로 환경에서 최단 경로가 될 수 있는 후보 상태들을 선택한다. 그리고 나서 최단 경로를 탐색하기 위해 후보 상태들을 학습한다. 실험을 통해, GDRLS는 미로 환경에서 TD-학습과 TD(${\lambda}$)-학습보다 더 빠르게 최단 경로를 탐색할 수 있음을 알 수 있다.

강화학습에 기초한 로봇 축구 에이전트의 동적 위치 결정 (Reinforcement Learning based Dynamic Positioning of Robot Soccer Agents)

  • 권기덕;김인철
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2001년도 가을 학술발표논문집 Vol.28 No.2 (2)
    • /
    • pp.55-57
    • /
    • 2001
  • 강화학습은 한 에이전트가 자신이 놓여진 환경으로부터의 보상을 최대화할 수 있는 최적의 행동 전략을 학습하는 것이다. 따라서 강화학습은 입력(상태)과 출력(행동)의 쌍으로 명확한 훈련 예들이 제공되는 교사 학습과는 다르다. 특히 Q-학습과 같은 비 모델 기반(model-free)의 강화학습은 사전에 환경에 대한 별다른 모델을 설정하거나 학습할 필요가 없으며 다양한 상태와 행동들을 충분히 자주 경험할 수만 있으면 최적의 행동전략에 도달할 수 있어 다양한 응용분야에 적용되고 있다. 하지만 실제 응용분야에서 Q-학습과 같은 강화학습이 겪는 최대의 문제는 큰 상태 공간을 갖는 문제의 경우에는 적절한 시간 내에 각 상태와 행동들에 대한 최적의 Q값에 수렴할 수 없어 효과를 거두기 어렵다는 점이다. 이런 문제점을 고려하여 본 논문에서는 로봇 축구 시뮬레이션 환경에서 각 선수 에이전트의 동적 위치 결정을 위해 효과적인 새로운 Q-학습 방법을 제안한다. 이 방법은 원래 문제의 상태공간을 몇 개의 작은 모듈들로 나누고 이들의 개별적인 Q-학습 결과를 단순히 결합하는 종래의 모듈화 Q-학습(Modular Q-Learning)을 개선하여, 보상에 끼친 각 모듈의 기여도에 따라 모듈들의 학습결과를 적응적으로 결합하는 방법이다. 이와 같은 적응적 중재에 기초한 모듈화 Q-학습법(Adaptive Mediation based Modular Q-Learning, AMMQL)은 종래의 모듈화 Q-학습법의 장점과 마찬가지로 큰 상태공간의 문제를 해결할 수 있을 뿐 아니라 보다 동적인 환경변화에 유연하게 적응하여 새로운 행동 전략을 학습할 수 있다는 장점을 추가로 가질 수 있다. 이러한 특성을 지닌 AMMQL 학습법은 로봇축구와 같이 끊임없이 실시간적으로 변화가 일어나는 다중 에이전트 환경에서 특히 높은 효과를 볼 수 있다. 본 논문에서는 AMMQL 학습방법의 개념을 소개하고, 로봇축구 에이전트의 동적 위치 결정을 위한 학습에 어떻게 이 학습방법을 적용할 수 있는지 세부 설계를 제시한다.

  • PDF

Unity3D 가상 환경에서 강화학습으로 만들어진 모델의 효율적인 실세계 적용 (Applying Model to Real World through Robot Reinforcement Learning in Unity3D)

  • 임은아;김나영;이종락;원일용
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2020년도 추계학술발표대회
    • /
    • pp.800-803
    • /
    • 2020
  • 실 환경 로봇에 강화학습을 적용하기 위해서는 가상 환경 시뮬레이션이 필요하다. 그러나 가상 환경을 구축하는 플랫폼은 모두 다르고, 학습 알고리즘의 구현에 따른 성능 편차가 크다는 문제점이 있다. 또한 학습을 적용하고자 하는 대상이 실세계의 하드웨어 사양이 낮은 스마트 로봇인 경우, 계산량이 많은 학습 알고리즘을 적용하기는 쉽지 않다. 본 연구는 해당 문제를 해결하기 위해 Unity3D에서 제공하는 강화학습 프레임인 ML-Agents 모듈을 사용하여 실 환경의 저사양 스마트 로봇에 장애물을 회피하고 탐색하는 모델의 강화학습을 적용해본다. 본 연구의 유의점은 가상 환경과 실 환경의 유사함과 일정량의 노이즈 발생 처리이다. 로봇의 간단한 행동은 원만하게 학습 및 적용가능함을 확인할 수 있었다.

메타강화학습을 이용한 수중로봇 매니퓰레이터 제어 (Control for Manipulator of an Underwater Robot Using Meta Reinforcement Learning)

  • 문지윤;문장혁;배성훈
    • 한국전자통신학회논문지
    • /
    • 제16권1호
    • /
    • pp.95-100
    • /
    • 2021
  • 본 논문에서는 수중 건설 로봇을 제어하기 위한 모델 기반 메타 강화 학습 방법을 제안한다. 모델 기반 메타 강화 학습은 실제 응용 프로그램의 최근 경험을 사용하여 모델을 빠르게 업데이트한다. 다음으로, 대상 위치에 도달하기 위해 매니퓰레이터의 제어 입력을 계산하는 모델 예측 제어로 모델을 전송한다. MuJoCo 및 Gazebo를 사용하여 모델 기반 메타 강화 학습을 위한 시뮬레이션 환경을 구축하였으며 수중 건설 로봇의 실제 제어 환경에서의 모델 불확실성을 포함하여 제안한 방법을 검증하였다.