• Title/Summary/Keyword: 하프늄코팅

Search Result 3, Processing Time 0.23 seconds

Thermal/Mechanical Properties of Hafnium Carbide Coatings on Carbon-Carbon Composites (탄소-탄소 복합재료의 하프늄 탄화물 코팅재의 열적/기계적 특성)

  • Choi, So-dam;Seo, Hyoung-IL;Lim, Byung-Joo;Sihn, Ihn Cheol;Lee, Jung Min;Park, Jong Kyoo;Lee, Kee Sung
    • Composites Research
    • /
    • v.31 no.5
    • /
    • pp.260-266
    • /
    • 2018
  • This study investigates thermal and mechanical characterization of Hafnium carbide coating on the $C_f-C$ composites. The hafnium carbide coatings by vacuum plasma spray on the C/C-SiC composites are prepared to evaluate oxidation and wear resistance. We perform the thermal durability tests by thermal cycling at $1200^{\circ}C$ for 10cycles in air and investigates the weight change of each cycle. We also evaluate the wear and indentation behavior using tungsten carbide ball indenter as a mechanical evaluation. As a result, the HfC coating is beneficial to reduce of weight loss during thermal cycling test and improve the elastic property of C/C-SiC composite. Especially, the HfC coating improves the wear resistance of C/C-SiC composite.

A Study on Improvement of the Ablation Resistance of Two Types of the Carbon/Carbon Composites by HfC Coating (하프늄카바이드 코팅을 통한 2종형상의 탄소/탄소복합재의 내삭마성 향상연구)

  • Kang, Bo-Ram;Kim, Ho-Seok;Oh, Phil-Yong;Choi, Seong-Man
    • Composites Research
    • /
    • v.33 no.4
    • /
    • pp.205-212
    • /
    • 2020
  • In this study, HfC was coated on two types of carbon/carbon composites coated with SiC by vacuum plasma spraying(VPS). The experiment was performed using a plasma wind tunnel with heat flux of 5.06 MW/㎡ for 120 s heat flux before and after the coating. The mass ablation rate was calculated through the mass change before and after the test, and the length change was measured by using calipers and high speed camera. The oxidation/ablation behavior were observed by FE-SEM with EDS analysis of the specimens cross section. The plasma wind tunnel test results showed that the coated specimens had low weight loss and length change, and high oxidation/ablation resistance. However, two types of the specimens tested under the same conditions were different in the ablation behavior and ablation rate, and it was evaluated that the cylindrical type had higher oxidation/ablation resistance.

Micromechanical Analysis for Effective Properties of HfC-coated Carbon/Carbon Composites (HfC-코팅 C/C 복합재료의 유효 물성 산출을 위한 미시역학 전산 해석)

  • Roh, Kyung Uk;Kim, Ho Seok;Shin, Eui Sup
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.12
    • /
    • pp.961-968
    • /
    • 2020
  • In this study, the effective thermal conductivity and elastic modulus of heat-resistant coating materials are analyzed by using micromechanical computational models. Three-dimensional computational models for HfC-coated carbon/carbon composites were created with Simpleware, and finite element analysis was performed. The porosity and thickness changes in the coating layer were taken into account to identify the tendency of effective material properties. In addition, the coupon specimen was produced to compare the thermal conductivity measured by experiments with the one obtained by finite element analysis according to temperature changes, and the analysis results were close to the measured values. This confirms that micromechanical computational analysis is appropriate in the calculation of effective material properties of coating composites.