• Title/Summary/Keyword: 하천 인근 지하수

Search Result 53, Processing Time 0.019 seconds

Characteristics and Improvement of Potential Acid Sulfate Soil Derived from Continental Materials on Alluvial Fan (선상지(扇床地) 육성(陸成) 잠재특이산성토(潛在特異酸性土)의 특성과 개량)

  • Jung, Yeun-Tae;Yun, Eul-Soo;Son, Il-Soo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.25 no.3
    • /
    • pp.195-201
    • /
    • 1992
  • A Potential acid sulfate soil derived from continental Holocene deposits on the fan-base was found and it was characterized with improvement practices. Artesian wells were scattered in the area, and the imperfectly drained soils were featured by having fine loamy with 7~30% of gravels. The potential acid sulfate soil layers were typified by having darkness in color with around 3.3~3.8% of O.M. and 0.34~0.41% of total sulfur. Soil pH ranged from 3.4 to 3.8 but it was decreased to 1.9~2.5 after oxidation with $H_2O_2$. Ground water sprang out from an artesian well contained a high amount of minerals such as Na, Ca, Mg, K, etc. and about 80ppm of sulfate which seemed to be responsible for pyrite formation. The soil was classified to member of "Fine loamy, mixed, acid, mesic, sulfic Haplaquepts" in taxonomically, and "weak potential acid sulfate soils" in interpretatively. The installation of tile drains with adding fine earth and liming were effective. However, the pH goes down to 4.8 again after 3 years of improvement practices.

  • PDF

The Application of Aluminum Coagulant for the Improvement of Water Quality in Three Recreational Ponds (알루미늄 응집제를 사용한 호수수질 개선 사례 연구)

  • Kang, Phil-Goo;Kim, Bom-Chul
    • Korean Journal of Ecology and Environment
    • /
    • v.36 no.4 s.105
    • /
    • pp.447-454
    • /
    • 2003
  • Aluminum coagulant was applied to two eutrophic lakes (Lake Sukchon, in Seoul, and a pond on the campus of Kangwon National University), to precipitate suspended particles and phosphate from the water column. Aluminum sulfate (alum) was used for seven treatments and polyaluminum chloride (PAC) was used for one treatment. The effect of treatment varied depending on the dose of alumium coagulant. Particles and phosphate were completely precipitated from the water column with a dose of 10.0 mgAl/l. Partial removal was observed at doses of 3.3 and 1.8 mgAl/l, but not at 0.45 mgAl/l. Therefore, coagulant should be applied at a dose over the threshold in order to remove particles effectively, which seems to be between 1.8 and 10.0 mgAl/l. The length of treatment effect was determined by new inputs of nutrients and particles from external sources. Renewal of pond water by stream water caused recovery of algal growth in Lake Sukchon, and rainfall runoff and ground water pumping caused a return of turbid water in the campus pond. During treatment there was no sign of decreasing pH, or harmful effects on fish or mussels. Aluminum coagulant may be an economically feasible alternative for water quality improvement when the external control of pollutant sources is difficult. However, repeated application is required when there is a renewal of lake water or new input of nutrients.

A Study on Obtaining Waters to Restore the Water-ecosystem of Deokjin Pond in Jeonju: New Paradigm for Restoration of Urban Reservoirs (전주시 덕진연못의 수생태 복원을 위한 용수확보방안 연구: 도시 저수지 복원의 새로운 패러다임)

  • Choi, Seung-Hyun;Kim, Seok-Hwi;Lee, Jin Won;Kim, Kangjoo;Oh, Chang Whan
    • Economic and Environmental Geology
    • /
    • v.48 no.6
    • /
    • pp.467-475
    • /
    • 2015
  • The Deokjin Pond is one of the places representing Jeonju City's history but has the poor water quality. The pond has a storage of $88,741m^3$ and a drainage area of $3.77km^2$. It has been maintained only by the groundwater pumped from the upstream wells and the direct rainfalls on the water surface since the old streams replenishing the pond were turned into a part of the sewer system due to indiscreet urbanization. The lack of replenishing water as well as the organic-rich bottom sediment were suggested as two main causes deteriorating the water-ecosystem. In this study, possible measures obtaining waters for restoration of Deokjin Pond ecosystem are discussed. It is estimated that the present pond can be replenished about 32 times a year by the runoff when the drainage system in the watershed is recovered to a state before urbanization. To support this, the drainage system is compared with that of nearby Osong Pond, which shows relatively better water-ecosystem. Even though Osong Pond has a drainage area one-seventh of that of Deokjin Pond, its storage is more than the half of it. It is because its watershed has a near natural drainage system where the rain mostly infiltrates into soil and slowly discharges into the pond. Therefore, it is believed that the low impact development (LID), which is known as a technique restoring the water circulating system to a condition before development, would be helpful in obtaining waters required for Deokjin Pond ecosystem management.