• Title/Summary/Keyword: 하천특성 분석

Search Result 2,400, Processing Time 0.044 seconds

Relationships between evapotranspiration on land use and micrometeorological factors in the coastal urban area (해안도시 지역에서 토지이용도를 고려한 증발산량과 미기상인자의 관계)

  • Kim, Sang Jin;Kang, Dong Hwan;Yu, Hun Sun;Kang, Sang Min
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.186-186
    • /
    • 2015
  • 본 연구에서는 해안도시(부산광역시 수영구) 지역의 토지이용도와 미기상인자를 고려하여 증발산량을 산정하였으며, 증발산량 변동에 대한 미기상인자의 영향성을 구명하였다. 수영구 지역의 토지이용도와 미기상인자는 2001년 12월부터 2011년 11월에 관측된 일별 자료를 사용하였다. 토지이용도는 불투수(건물, 도로 등) 및 산림(임야), 초지(논밭, 공원 등), 수계(하천, 호수 등) 지역으로 분류하였으며, 4개 지역 특성을 고려한 최적의 추정식을 적용하여 증발산량을 산정하였다. 수영구 지역의 전체 증발산량은 4개 지역에서 산정된 증발산량에 토지이용 비율을 곱하여 구하였다. 연간 증발산량 변동은 1월부터 7월까지 증가하다가 8월부터 12월까지 감소하는 형태를 보였다. 수영구 지역에서 증발산량은 강수량의 약 13.3% 정도이었으며, 이는 연구지역의 72%에 해당하는 불투수 지역에서 배수로를 통한 물의 유출이 강우 발생 후 짧은 시간 동안 다량 발생하였기에 지속적인 증발산이 가능한 잠재수량의 저유량이 적었기 때문이다. 증발산량과 미기상인자 간의 상관분석을 수행하였으며, 증발산량과 이슬점 온도의 상관계수가 0.63으로 가장 높았다. 증발산량에 대한 기온 및 강수량, 순복사 인자의 상관계수는 0.5 이상으로 양의 상관성을, 기압 및 일조시간은 0.5 이상의 음의 상관성을 보였다. 증발산량에 대한 상관계수가 0.5 이상인 미기상인자(이슬점온도와 기온, 순복사, 기압, 강수량)에 대한 회귀 분석을 수행하였다. 이슬점온도와 기온, 순복사, 기압에 대한 증발산량 회귀함수 그래프는 강수의 유무에 따라 2가지 경향을 보였다. 이슬점온도에 따른 증발산량 회귀함수는 강수 발생 시에는 $ET=0.004x+0.7$, 무강수 시에는 $ET=0.25{\times}e^{0.04x}$로 추정되었으며, 결정계수는 각각 0.48과 0.96 정도로서 무강수 시에 높게 나타났다. 기온에 따른 증발산량 회귀함수는 강수 발생 시에는 $ET=0.004x+0.53$, 무강수 시에는 $ET=0.13{\times}e^{0.06x}$로 추정되었으며, 결정계수는 각각 0.39와 0.89 정도로서 무강수 시에 높게 나타났다. 순복사에 따른 증발산량 회귀함수는 강수 발생 시에는 $ET=0.79x+0.49$, 무강수 시에는 $ET=0.22x+0.03$로 추정되었으며, 결정계수는 각각 0.34와 0.89 정도로서 무강수 시에 높게 나타났다. 기압에 따른 증발산량 회귀함수는 강수 발생 시에는 $ET=-0.04x+37.91$, 무강수 시에는 $ET=5.18{\times}10^{22}{\times}e^{-0.05x}$로 추정되었으며, 결정계수는 각각 0.25와 0.45 정도로 나타났다. 강수량에 따른 증발산량 회귀함수는 $ET=0.23lnx+0.90$으로 추정되었으며, 결정계수 0.61정도 나타났다.

  • PDF

Monthly Water Balance Analysis of Hwanggang Dam Reservoir for Imjin river in Border Area using Optical Satellite (광학위성을 활용한 임진강 접경지역 황강댐 저수지의 월단위 물수지 분석)

  • KIM, Jin-Gyeom;KANG, Boo-Sik;YU, Wan-Sik;HWANG, Eui-Ho
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.24 no.4
    • /
    • pp.194-208
    • /
    • 2021
  • The Hwanggang Dam in North Korea is located upstream of the Imjin River which is a shared river in the border area. It is known to have a reservoir capacity of 350 million cubic meters and releases a discharge primarily for generating hydroelectric power and partly for transferring to the Yesung River basin. Due to the supply of water from the Hwanggang Dam to another basin, the flow of the Imjin River has decreased, which has a negative impact on the water supply, river maintenance flow, water quality, and ecological environment in Korea. However, due to the special national security issue of the South and North Korea border region, the hydrological data is not shared, and the operation method of the Hwanggang Dam is unknown, so there is a risk of damage to the southern part of the downstream area. In this study, the monthly diversion as the long-term runoff concept was derived through the calibrated hydrological model based on optical remotely sensed Images and water balance analysis. As a result of the water balance analysis from January 2019 to September 2021, the average diversion of the Hwanggang Dam was 29.2m3/s, which is equivalent to 922 million tons per year and 45.6% of the annual inflow of 2.02 million tons into the Hwanggang Dam.

Characteristics of Distribution of Phytoplankton Communities in Three Estuarial Lakes of the Yeongsan River (영산강 하구역에 위치한 세 호수의 식물플랑크톤 군집 분포 특성)

  • Cho, Hyeon Jin;Na, Jeong Eun;Lee, Gun Ju;Lee, Hak Young
    • Korean Journal of Ecology and Environment
    • /
    • v.54 no.4
    • /
    • pp.291-302
    • /
    • 2021
  • The phytoplankton community in the estuarine system is affected by changes of physicochemical factors easily. The present study analyzed phytoplankton community distribution and similarity, in addition to exploring factors influencing variations in phytoplankton community structure in three lakes located in the Yeongsan River estuary from March 2014 to November 2017. We carried out non-multidimensional scaling (NMDS) and random forest analysis (RF) for comparing the pattern of phytoplankton distribution and the relationship between phytoplankton distribution and environmental variables. Similarity Percentage (SIMPER) and Analysis of Similarity (ANOSIM) were performed to figure out the similarity of phytoplankton community at each site of three lakes. From NMDS, Phytoplankton community distribution differed between Yeongsan and Gumho lakes, and the factors influencing the distribution of phytoplankton communities across the three lakes were water temperature, dissolved oxygen, total nitrogen (T-N), nitrate-N (NO3-N), and conductivity. NO3-N was a key factor influencing phytoplankton community structure in the three lakes based on RF. A total of 24 species were identified as indicator species in the three lakes studied, with the highest species numbers observed in Yeongsan Lake (13) and the lowest observed in Yeongam Lake (2). According to SIMPER and ANOSIM results, the phytoplankton community in Yeongsan and Yeongam lakes were similar, and they differed from those in Gumho Lake. In addition, the phytoplankton community structure varied across the study sites in the three lakes, indicating that water channels across the lakes a minor influence phytoplankton community distribution.

Numerical Investigations of Vorticity Generation in Fully Vegetated Open-Channel Flows (수치모의를 이용한 전단면 식생 수로에서의 와도 생성 분석)

  • Kang, Hyeongsik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.2B
    • /
    • pp.179-189
    • /
    • 2010
  • This paper presents a numerical investigation of vorticity generation in fully vegetated open-channel flows. The Reynolds stress model is used for the turbulence closure. Open-channel flows with rough bed-smooth sidewalls and smooth bed-rough sidewalls are simulated. The computed vectors show that in channel flows with rough bed and rough sidewalls, the free-surface secondary currents become relatively smaller and larger, respectively, compared with that of plain channel flows. Also, open-channel flows over vegetation are simulated. The computed bottom vortex occupies the entire water depth, while the free-surface vortex is reduced. The contours of turbulent anisotropy and Reynolds stress are presented with different density of vegetation. The budget analysis of vorticity equation is carried out to investigate the generation mechanism of secondary currents. The results of the budget analysis show that in plain open-channel flow, the production by anisotropy is important in the vicinity of the wall and free-surface boundaries, and the production by Reynolds stress is important in the region away from the boundaries. However, this rule is not effective in vegetated channel flows. Also, in plain channel flows, the vorticity is generated mainly in the vicinity of the free-surface and the bottom, while in vegetated channel flows, the regions of the bottom and vegetation height are important to generate the vorticity.

Development of harmful algae collecting system for agricultural material recycling (농업재료 자원화를 위한 유해조류 포집 시스템 개발)

  • Kim, J.H.;Kim, J.M.;Jeong, Y. W.;Kwack, Y.K.;Sim, S.K.
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.50-50
    • /
    • 2022
  • 한국농어촌공사 산하의 농업용저수지 중 3786개소에 대한 수질조사를 '19년도에 실시한 결과, TOC 기준 4등급 초과 저수지 비율은 약 20%로써, 도심 근교 저수지에서 녹조현상 빈발로 인해 수질, 악취, 미관 등의 환경문제 개선 민원이 다수 발생하고 있다. 현재 녹조 발생 사후관리를 위해 주로 사용되고 있는 대형 조류제거선은 저수심 수변부에서의 적용성에 한계가 있고, Al 기반의 응집제를 사용하여 조류를 수거해서 폐기하고 있는 실정이다. (주)이엔이티는 농어촌연구원, (주)코레드, (주)삼호인넷과 함께 호소나 정체하천의 수변지역에 적용될 수 있는 저에너지형 유해조류 포집시스템 개발과, 수거된 조류부산물을 무독화하여 농업재료로 재활용하는 방안을 연구하고 있다. 저수지나 정체수역의 녹조는 바람, 수면유동 등에 의해 수변에 집적되는 특성이 있어, 인공지능 기술로 녹조현상을 감시하여 조류 밀집구간에 접근할 수 있는 자율이동식 수상이동장치를 개발 중이다. 수상이동장치는 조류포집장치를 탑재하기 위한 부력체, 원격 운전이 가능한 무인항법장치, 수변식생대 및 저수심지역 이동을 고려한 수차방식 추진체, 전체 장치의 전원 공급을 위한 고성능 배터리 등으로 구성하여 상세 도면 설계를 진행하고 있다. 조류포집장치에는 표층에 주로 분포하는 남조류를 선택 흡입하는 포집 부표를 적용하였고, Al계 응집제 사용을 배제한 분리막 실험을 통해 침지형 막분리조 및 가압형 농축조를 설계하였다. 유해조류 포집 및 농축은 수상에서 이동체에 탑재하여 이뤄지고, 육상에서는 자원 회수가 가능하도록 회분식 응집공정으로 구분하였다. 조류 밀집지역에서 수거된 조류의 무독화 및 농업재료 자원화 타당성 평가를 위해 특용 버섯균주를 활용한 시료별 분석항목을 선정하고 실험 매트릭스에 따라 실증실험을 수행하였다. 수거조류를 전처리하여 성분 및 발열량을 분석하고 버섯재배 전후의 마이크로시스틴 독소(LR, RR, LR)를 포함한 성분 분석을 수행하여, 고체연료, 비료 및 사료로 활용방안을 검토하였다. 무인자율이동 조류포집장치는 실증화 규모로 제작하여 기선정된 테스트베드에서 현장적용성 평가를 수행할 예정이다. 본 연구를 통해 개발된 유해조류 포집 시스템은 기존의 녹조제거 방안을 보완하여 정체수역의 생태계 복원 및 친수공간의 환경개선 등에 적용되며, 무독화가 입증된 유해조류의 농업재료 자원화 기술은 고부가 상품 개발 및 환경폐기물 감축에 활용될 것이다.

  • PDF

Analysis of the Characteristics of Water Quality Difference Occurring between High Tide and Low Tide in Masan Bay (만조와 간조시 마산만 수질의 농도차 발생 특성의 분석)

  • Yoo, Youngjin;Kim, Sung Jae
    • Journal of Wetlands Research
    • /
    • v.21 no.2
    • /
    • pp.102-113
    • /
    • 2019
  • Slack-tide sampling was carried out at 6 stations at high and low tide for a tidal cycle during spring tide of the early summer (June) and summer (July, August) of 2016 to determine the difference of water quality according to tide in Masan Bay, Korea. The mixing regime of all the water quality components investigated was well explained through the correlation with SAL. In the early summer and summer, TURB, DSi and NNN which mainly flow into the bay from the streams and SS, COD, AMN and $H_2S$ which mainly indicate the internal sink and source materials have a property of conservative mixing and non-conservative mixing, respectively. The conservative mixing showed a good linear relationship of the water quality between high and low tide, and the non-conservative mixing showed a variation of different pattern each other. Factor analysis performed on the concentration difference data sets between high and low tide helped in identifying the principal latent variables for them. In early summer, multiple effects (tidal action, natural influx and internal sinks and sources etc.) acted in combination for the differences to be distributed evenly in four factors (VF1~4), since there were few allochthonous inputs as a low-water season. On the contrary, in summer, the parameters showing large concentration difference at ST-1 affected by stream water were concentrated in one factor (VF1) and clearly distinguished from the parameters affected by the internal sinks and sources. In fact, there is no estuary (bay) that always maintains steady state flow conditions. The mixing regime of an estuary might be changed at any time due to the change of flushing time, and furthermore the change of end-member conditions due to the internal sinks and sources makes the occurrence of concentration difference inevitable. Therefore, when investigating the water quality of the estuary, it is necessary to take a sampling method considering the tide to obtain average water quality data.

Analysis of inundation and rainfall-runoff in mountainous small catchment using the MIKE model - Focusing on the Var river in France - (MIKE 모델을 이용한 산지소유역 강우유출 및 침수 분석 - 프랑스 Var river 유역을 중심으로 -)

  • Lee, Suwon;Jang, Dongwoo;Jung, Seungkwon
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.1
    • /
    • pp.53-62
    • /
    • 2023
  • Recently, due to the influence of climate change, the occurrence of damage to heavy rain is increasing around the world, and the frequency of heavy rain with a large amount of rain in a short period of time is also increasing. Heavy rains generate a large amount of outflow in a short time, causing flooding in the downstream part of the mountainous area before joining the small and medium-sized rivers. In order to reduce damage to downstream areas caused by flooding, it is very important to calculate the outflow of mountainous areas due to torrential rains. However, the sewage network flooding analysis, which is currently conducting the most analysis in Korea, uses the time and area method using the existing data rather than calculating the rainfall outflow in the mountainous area, which is difficult to determine that the soil characteristics of the region are accurately applied. Therefore, if the rainfall is analyzed for mountainous areas that can cause flooding in the downstream area in a short period of time due to large outflows, the accuracy of the analysis of flooding characteristics that can occur in the downstream area can be improved and used as data for evacuating residents and calculating the extent of damage. In order to calculate the rainfall outflow in the mountainous area, the rainfall outflow in the mountainous area was calculated using MIKE SHE among the MIKE series, and the flooding analysis in the downstream area was conducted through MIKE 21 FM (Flood model). Through this study, it was possible to confirm the amount of outflow and the time to reach downstream in the event of rainfall in the mountainous area, and the results of this analysis can be used to protect human and material resources through pre-evacuation in the downstream area in the future.

Analysis of First Flushing Effects and EMCs of Non-point Pollutants from Impervious Area during Rainfall (강우시 불투수성 지역의 비점오염물질 EMCs 산정 및 초기세척효과 분석)

  • Ahn, Tae-Woong;Kim, Tae-Hoon;Oh, Jong-Min
    • Korean Journal of Ecology and Environment
    • /
    • v.45 no.4
    • /
    • pp.459-473
    • /
    • 2012
  • This study evaluated the rainfall-runoff characteristics of Non-point Pollution Source (NPS) of the impervious area through on-site monitoring. In this study, trend analysis was performed by various runoff analysis method of non-point pollution source. The characteristics of rainfall at impervious area appeared to be influenced by rainfall strength. It is judged that the measure is required to be prepared against that now that concentration difference of non-point pollution source appeared to be big by precedent number of days of no rainfall. However, it appeared that Rainfall Sustaining Time (RST) has nothing to do with effluent concentration of non-point pollution source, however, the rising tendency that effluent concentration did not appear because the tendency that concentration of non-point pollution source reduces more than 50% within initial 60 min due to first flushing effects and rainfall sustaining time is long. If looking into the outflow tendency of non-point pollution source at the impervious area, it showed the tendency that the concentration lowers gradually as time goes by after initial concentration appeared very high. However, it could be recognized that the concentration of non-point pollution source appeared to be high as the pollutants integrated on the surface of the road during dry season. The Event Mean Concentrations (EMCs) in impervious area were ranged $9.2{\sim}199.3mg{\cdot}L^{-1}$ for TSS, $8.1{\sim}24.2mg{\cdot}L^{-1}$ for $COD_{Mn}$, $0.070{\sim}1.860mg{\cdot}L^{-1}$ for T-N. Based on such runoff characteristics of non-point pollution source, it is judged that it would be desirable to process initial rain efficiently as the measure against initial rain phenomenon at the impervious area.

Water Balance and Pollutant Load Analyses according to LID Techniques for a Town Development (도시 개발 전·후 LID 기법 적용에 따른 물수지 및 오염부하 변동 특성)

  • Park, Ji-Young;Lim, Hyun-Man;Lee, Hae-In;Yoon, Young-Han;Oh, Hyun-Je;Kim, Weon-Jae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.11
    • /
    • pp.795-802
    • /
    • 2013
  • According to the increase of impervious area due to the town development, the rate of infiltration generally lessens and that of runoff rises during wet weather events. And it is concerned that its impacts on water quality for the downstream water bodies due to the change of rainfall runoff patterns may also increase. To cope with these issues, LID (Low Impact Development) techniques which try to maintain the characteristics of rainfall runoff regardless of the town development have been introduced actively. However, the behaviors of each LID technique for rainfall runoff and pollutant loads is not understood sufficiently. In this study, considering the applications of some LID techniques, several sets of simulations using a distributed rainfall runoff model, SWMM-LID, have been conducted for D town whose development is progressing. As the results of the simulations, the rates of infiltration/storage have been decreased from 78% in the case before the town development to 15% after the development and increased again by 24% with LID techniques such as porous pavement, rain barrel and rain garden. The rates of runoff have been increased more than three times from 20% in the case before the development to 74% after the development, and they have also been decreased to 66% by the adoption of LID techniques. It has been simulated that porous pavement is more effective than others in the view point of the reduction of runoff and rain barrel is more attractive for the management of pollutant loads (TSS, BOD, COD, T-N and T-P). Therefore, if some LID techniques should be selected for the a new town, it could be concluded that some techniques with better infiltration functions are recommendable for the control of runoff, and ones with larger storage functions for the management of pollutant loads.

Assessment of Eutrophication Using Trophic State Index and Water Quality Characteristics of Saemangeum Lake (새만금호의 수질 특성 및 영양상태지수를 이용한 부영양화 평가)

  • Jong Gu Kim
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.6
    • /
    • pp.587-597
    • /
    • 2023
  • We evaluated the eutrophication of Saemangeum Lake, which causes abnormal growth of algae, using the Carlson index. Eutrophication characteristics of Saemangeum Lake were analyzed. For the study, water quality surveys were conducted at 7 stations in Saemangeum Lake every month in 2021. The concentration of Chl.a was slightly higher in the Mankyeong water system in winter, and slightly higher in the Dongjin water system in spring and summer, but overall, except for some periods, the concentration was similar to or lower than the lake water quality environmental standard of class 3. COD showed water quality similar to or above the lake quality environmental standard of grade 4 in both the Mankyeong and Dongjin water systems in the summer and Autumn. TOC concentrations were within lake water quality standard 3 at all sites. Total phosphorus concentrations exceeded the lake water quality standard of Class 4 and were higher in January and August after rainfall. In the correlation analysis between water quality factors, the correlation of organic matter, total phosphorus, and total nitrogen to salinity was relatively high. This reflected the water quality characteristics of freshwater, brackish water, and seawater areas due to seawater inflow through the drainage gate and freshwater inflow through upstream rivers. According to the characteristics of eutrophication fluctuations in Saemangeum Lake by trophic state index, the indices of Chl.a, SD, and TN showed water quality in the early stage of eutrophication, while the TP index showed a severe eutrophication state. The magnitude of the eutrophication index among water quality components was TSI(TP) > TSI(TN) > TSI(SD) > TSI(CHL) in all water systems. Quadrant analysis of the deviation of TSI(CHL) from TSI(TP) and TSI(SD) on a two-dimensional plane showed that there was no limiting effect of total phosphorus on algal growth in all water systems. In addition, the factors af ecting light attenuation appeared to be dominated by small particulate matter from outside sources.