• Title/Summary/Keyword: 하천연구센터

Search Result 295, Processing Time 0.019 seconds

Study of Spatiotemporal Variations and Origin of Nitrogen Content in Gyeongan Stream ( 경안천 내 질소 함량의 시공간적 변화와 기원 연구)

  • Jonghoon Park;Sinyoung Kim;Soomin Seo;Hyun A Lee;Nam C. Woo
    • Economic and Environmental Geology
    • /
    • v.56 no.2
    • /
    • pp.139-153
    • /
    • 2023
  • This study aimed to understand the spatiotemporal variations in nitrogen content in the Gyeongan stream along the main stream and at the discharge points of the sub-basins, and to identify the origin of the nitrogen. Field surveys and laboratory analyses, including chemical compositions and isotope ratios of nitrate and boron, were performed from November 2021 to November 2022. Based on the flow duration curve (FDC) derived for the Gyeongan stream, the dry season (mid-December 2021 to mid-June 2022) and wet season (mid-June to early November 2022) were established. In the dry season, most samples had the highest total nitrogen(T-N) concentrations, specifically in January and February, and the concentrations continued to decrease until May and June. However, after the flood season from July to September, the uppermost subbasin points (Group 1: MS-0, OS-0, GS-0) where T-N concentrations continually decreased were separated from the main stream and lower sub-basin points (Group 2: MS-1~8, OS-1, GS-1) where concentrations increased. Along the main stream, the T-N concentration showed an increasing trend from the upper to the lower reaches. However, it was affected by those of the Osan-cheon and Gonjiamcheon, the tributaries that flow into the main stream, resulting in respective increases or decreases in T-N concentration in the main stream. The nitrate and boron isotope ratios indicated that the nitrogen in all samples originated from manure. Mechanisms for nitrogen inflow from manure-related sources to the stream were suggested, including (1) manure from livestock wastes and rainfall runoff, (2) inflow through the discharge of wastewater treatment plants, and (3) inflow through the groundwater discharge (baseflow) of accumulated nitrogen during agricultural activities. Ultimately, water quality management of the Gyeongan stream basin requires pollution source management at the sub-basin level, including its tributaries, from a regional context. To manage the pollution load effectively, it is necessary to separate the hydrological components of the stream discharge and establish a monitoring system to track the flow and water quality of each component.

Ecological Network on Benthic Diatom in Estuary Environment by Bayesian Belief Network Modelling (베이지안 모델을 이용한 하구수생태계 부착돌말류의 생태 네트워크)

  • Kim, Keonhee;Park, Chaehong;Kim, Seung-hee;Won, Doo-Hee;Lee, Kyung-Lak;Jeon, Jiyoung
    • Korean Journal of Ecology and Environment
    • /
    • v.55 no.1
    • /
    • pp.60-75
    • /
    • 2022
  • The Bayesian algorithm model is a model algorithm that calculates probabilities based on input data and is mainly used for complex disasters, water quality management, the ecological structure between living things or living-non-living factors. In this study, we analyzed the main factors affected Korean Estuary Trophic Diatom Index (KETDI) change based on the Bayesian network analysis using the diatom community and physicochemical factors in the domestic estuarine aquatic ecosystem. For Bayesian analysis, estuarine diatom habitat data and estuarine aquatic diatom health (2008~2019) data were used. Data were classified into habitat, physical, chemical, and biological factors. Each data was input to the Bayesian network model (GeNIE model) and performed estuary aquatic network analysis along with the nationwide and each coast. From 2008 to 2019, a total of 625 taxa of diatoms were identified, consisting of 2 orders, 5 suborders, 18 families, 141 genera, 595 species, 29 varieties, and 1 species. Nitzschia inconspicua had the highest cumulative cell density, followed by Nitzschia palea, Pseudostaurosira elliptica and Achnanthidium minutissimum. As a result of analyzing the ecological network of diatom health assessment in the estuary ecosystem using the Bayesian network model, the biological factor was the most sensitive factor influencing the health assessment score was. In contrast, the habitat and physicochemical factors had relatively low sensitivity. The most sensitive taxa of diatoms to the assessment of estuarine aquatic health were Nitzschia inconspicua, N. fonticola, Achnanthes convergens, and Pseudostaurosira elliptica. In addition, the ratio of industrial area and cattle shed near the habitat was sensitively linked to the health assessment. The major taxa sensitive to diatom health evaluation differed according to coast. Bayesian network analysis was useful to identify major variables including diatom taxa affecting aquatic health even in complex ecological structures such as estuary ecosystems. In addition, it is possible to identify the restoration target accurately when restoring the consequently damaged estuary aquatic ecosystem.

Impact of Sluice Gates at Stream Mouth on Fish Community (하구의 배수갑문 설치 유무가 어류군집에 미치는 영향)

  • Kim, Jun-Wan;Kim, Kyu-Jin;Choi, Beom-Myeong;Yoon, Ju-Duk;Park, Bae-Kyung;Kim, Jong-Hak;Jang, Min-Ho
    • Korean Journal of Ecology and Environment
    • /
    • v.55 no.1
    • /
    • pp.49-59
    • /
    • 2022
  • Total of 325 estuaries in Korea were surveyed to analyze the effect of presence of sluice gate on the estuary environment and fish community from 2016 to 2018. Fish community in closed and open estuaries showed differences generally, and the relative abundance (RA) of primary freshwater species in the closed and migratory species in the open estuaries were high. The result of classifying species by habitat characteristics in closed and open estuaries showed similar tendencies at the estuaries of south sea and west sea. The relative abundances of primary freshwater species in the closed estuaries at the estuaries of south sea and west sea were the highest, but estuarine and migratory species were high in both closed and open estuaries at the estuaries of east sea. Primary freshwater species showed higher abundances in the closed estuaries with reduced salinity due to blocking of seawater since they are not resistant to salt. However, primary freshwater species in open estuaries at east sea was higher than that of the closed estuaries, which is considered to be the result of reflecting the characteristics (tide, sand bar, etc.) of the east sea. Korea Estuary Fish Assessment Index (KEFAI) was showed to be higher at open estuaries than closed in all sea areas (T-test, P<0.001), the highest KEFAI was observed in closed estuaries at south sea, and open estuaries in east sea. Fish community of closed and open estuaries in each sea areas showed statistically significant differences (PERMANOVA, East, Pseudo-F=3.0198, P=0.002; South, Pseudo-F=22.00, P=0.001; West, Pseudo-F=14.067, P=0.001). Fish assemblage similarity by sea areas showed a significant differences on fish community in closed and open estuaries at east sea, south sea, and west sea (SIMPER, Group dissimilarity, 85.85%, 88.36%, and 88.05%). This study provided information on the characteristics and distribution of fish community according to the types of estuaries. The results of this study can be used as a reference for establishing appropriate management plans according to the sea areas and type in the management and restoration of estuaries for future.

Analysis of Fish Utilization and Effectiveness of Fishways Installed at Weirs in Large Rivers (대하천 보에 설치된 어도의 어류 이용 현황 및 효과 분석)

  • Jeong-Hui Kim;Sang-Hyeon Park;Seung-Ho Baek;Namjoo Lee;Min-Ho Jang;Ju-Duk Yoon
    • Korean Journal of Ecology and Environment
    • /
    • v.56 no.4
    • /
    • pp.348-362
    • /
    • 2023
  • This study analyzed the monitoring results of fishways at 16 weirs constructed on four large Rivers to provide data helpful for the operation and management of fishways. The average utilization rate of the fishways at the weirs was confirmed to be 64.9%. When comparing the dominant species in the mainstream and fishway monitoring results, differences were observed in 9 weirs (56.3%). This indicated that the species prevalent in the mainstream were not necessarily the ones most frequently using the fishways. The average number of individuals using the fishways per day was 336. When classifying the fish species using the fishway by life type, 92.3% were primary freshwater fish, and migratory species accounted for only 5.6%. Analysis based on the season of fishway usage revealed that an average or higher number of fish species used the fishways from May to October, with the highest number of individual users occurring from June to August. Between May and July, 80% of the fish species using the fishways were in their spawning period, while during other season, less than 40% were species that move during the spawning period. The fishways that showed a significant alignment between the spawning period and the fishway passage period were Rhinogobius brunneus, Leiocassis nitidus, Squalidus chankaensis tsuchigae, Pseudogobio esocinus, Acheilognathus rhombeus, and Pungtungia herzi, in that order. When comparing the fishway monitoring results of the Gangjeong-Goryeong Weir and the Dalseong Weir with the upper part water level of the weir, both the number of fish species and individuals using the fishway showed positive correlations with the upper part water level of the weir. This suggests that a higher water level of the weir increases the inflow discharge within the fishway, leading to increased use by fish (number of individuals in Gangjeong-Goryeong Weir, P<0.001; number of species in Dalseong Weir, P<0.05). This study summarized and analyzed the results of fishway monitoring at 16 weirs built on four large Rivers, considering fishway efficiency, operation and management, monitoring period, and regulation of water level in the upper part of the weir. It is thought that this will help understand the status of fish use in fishways on large River and aid the construction, operation, and management of fishways in the future.

Efficiency of Density Gradient Centrifugation Method (Ludox method) Based on eDNA for the Analysis of Harmful Algal Bloom Potential (유해남조류 발생 잠재성 분석을 위한 eDNA 기반의 퇴적물 전처리 방법: 밀도 구배 원심분리법(Ludox method))

  • Kyeong-Eun Yoo;Hye-In Ho;Hyunjin Kim;Keonhee Kim;Soon-Jin Hwang
    • Korean Journal of Ecology and Environment
    • /
    • v.56 no.1
    • /
    • pp.36-44
    • /
    • 2023
  • Environmental DNA (eDNA) can exist in both intracellular and extracellular forms in natural ecosystems. When targeting harmful cyanobacteria, extracellular eDNA indicates the presence of traces of cyanobacteria, while intracellular eDNA indicates the potential for cyanobacteria to occur. However, identifying the "actual" potential for harmful cyanobacteria to occur is difficult using the existing sediment eDNA analysis method, which uses silica beads and cannot distinguish between these two forms of eDNA. This study analyzes the applicability of a density gradient centrifugation method (Ludox method) that can selectively analyze intracellular eDNA in sediment to overcome the limitations of conventional sediment eDNA analysis. PCR was used to amplify the extracted eDNA based on the two different methods, and the relative amount of gene amplification was compared using electrophoresis and Image J application. While the conventional bead beating method uses sediment as it is to extract eDNA, it is unknown whether the mic gene amplified from eDNA exists in the cyanobacterial cell or only outside of the cell. However, since the Ludox method concentrates the intracellular eDNA of the sediment through filtration and density gradient, only the mic gene present in the cyanobacteria cells could be amplified. Furthermore, the bead beating method can analyze up to 1 g of sediment at a time, whereas the Ludox method can analyze 5 g to 30 g at a time. This gram of sediments makes it possible to search for even a small amount of mic gene that cannot be searched by conventional bead beating method. In this study, the Ludox method secured sufficient intracellular gene concentration and clearly distinguished intracellular and extracellular eDNA, enabling more accurate and detailed potential analysis. By using the Ludox method for environmental RNA expression and next-generation sequencing (NGS) of harmful cyanobacteria in the sediment, it will be possible to analyze the potential more realistically.