• Title/Summary/Keyword: 하천수위예측

Search Result 336, Processing Time 0.044 seconds

Prediction of the Water Level of the Tidal River using Artificial Neural Networks and Stationary Wavelets Transform (인공신경망과 정상 웨이블렛 변환을 활용한 감조하천 수위 예측)

  • Lee, Jeongha;Hwang, SeokHwan
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.357-357
    • /
    • 2021
  • 홍수로 인한 침수피해 발생을 최소화하기 위해 정확한 하천의 수위 예측과 리드타임 확보가 매우 중요하다. 특히 조석현상의 영향을 받는 감조하천의 경우 기존의 물리적 수문모형의 적용이 제한되어 하천수위 예측의 정확도가 떨어지기도 한다. 따라서 본 연구에서는 이러한 감조하천 수위 예측의 정확도를 높이기 위해 조석현상을 분리하고 인공신경망을 활용하는 하이브리드 모델을 제안 하였으며 다중 선형회귀분석과 비교 분석하였다. 감조하천에 위치한 교량의 수위데이터에서 Stationary Wavelet Transform으로 조석현상을 분리하였으며, 이외의 수위에 영향을 주는 time series data와 인공신경망(ANN)을 활용하여 1시간, 2시간, 3시간 후의 수위를 예측하였다. 하이브리드 모델은 96% 이상의 정확도를 보였으며 다중 선형회귀 분석과 비교하여도 높은 정확성을 보여주었다.

  • PDF

A study on the construction of learning data when predicting river water level using deep learning (딥러닝기법 이용한 하천수위 예측시 학습자료 구축에 대한 연구)

  • Yuk, Gi-moon;Kim, Jang-Gyeong;Park, Chan-ho;Kim, Tae-Jeong;Moon, Yong-il
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.357-357
    • /
    • 2022
  • 도심지 하천의 수위예측을 위해서는 일반적으로 수리-수문모형을 기반으로한 홍수위 모형을 사용하고 있다. 하지만 이러한 모형들은 매개변수 추정방법 및 모형구축을 행한 사용자의 숙련도에 따라 불확실성이 매우 크다 이러한 문제점을 개선하기 위해 데이터 기반의 딥러닝기법을 이용한 하천수위 예측이 많이 연구되고 있으나 수문기상자료와 같이 이전 시간 값과의 상관성이 큰 자료를 활용하면서 발생하는 자기 예측(self Prediction) 현상이 발생한다. 또한 도심지 하천의 데이터 품질관리의 문제로 입력자료 구축에 어려움이 있다. 본 연구는 중랑천 유역을 중심으로 2015년 ~ 2020년 사이의 강우 및 수위자료를 이용하여 학습을 진행하였으며 하천의 수위 예측을 수행함에 있어 학습입력자료 구축시 강우사상의 구분 방법에 따른 예측결과 비교 및 지연시간 및 Embedding Dimension을 이용한 전처리를 통해 자기 예측 현상을 비교해 보았다. 본 연구를 통해 도심지 하천 수위예측의 학습입력자료 구성을 위한 방안을 제시하였다.

  • PDF

Forecasting Technique of Downstream Water Level using the Observed Water Level (관측 수위자료를 이용한 하류 홍수위 예측기법)

  • Kim, Sang Mun;Choi, Heung Sik
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.354-354
    • /
    • 2017
  • 홍수예경보는 발생되는 홍수의 규모와 시간을 가능한 정확하고 빠르게 예측하여 홍수에 대한 위험성을 사전에 알리고자 하는데 목적이 있다. 따라서 하천범람에 따른 피해를 최소화하기 위한 홍수예경보는 일정시간의 선행시간을 확보하는 것이 매우 중요하다. 본 연구에서는 현재 하천에서 측정되고 있는 수위 관측 자료를 이용하여 하류의 수위를 예측하였다. 수위 예측을 위해 다중회귀모형 및 신경망 모형을 한강의 제1지류인 횡성댐 상류 섬강 시험유역에 적용하였다. 다중회귀모형 및 신경망 모형의 학습에는 섬강 시험유역의 2002년부터 2010년까지의 수위 관측 자료를 이용하였으며, 학습된 모형을 이용하여 30분 이내에 발생 가능한 수위를 예측하였다. 모의 결과 신경망 수위예측모형의 결정계수는 0.967으로 나타났으며, 다중회귀수위예측 모형의 결정계수는 0.815로 나타나 신경망을 이용한 수위예측모형이 다중회귀모형보다 좀 더 나은 예측 결과를 나타내는 것을 확인할 수 있었다. 본 연구결과는 향후 중소하천에서 선행시간을 확보한 홍수 예경보 구축에 활용할 수 있을 것으로 판단된다.

  • PDF

Research on the prediction of stream water level using Samcheok electromagnetic precipitation observation station (삼척 전파강수관측소 추정강우를 활용한 하천 수위 상승 예측 연구)

  • Yoon, Seong Sim;Lim, Sanghun;Jeong, Hyeon Gyo;Cho, Yo Han
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.11-11
    • /
    • 2021
  • 2018년부터 삼척지역에는 전파강수관측소(X-band 이중편파레이더)가 설치되어 현업 운영 중에 있다. 해당 지역은 영동지역은 산지로 둘러싸여 있어 지형적인 여건으로 지상강우관측망과 기존 대형 강우레이더로도 정확한 강우관측에 한계가 있었다. 설치 이후 전파강수관측소의 품질관리와 최적 관측전략 수립, 분포형 비차등위상차 기반의 강우추정 기법의 적용으로 정량적 추정강우의 정확도가 확보되어 75m의 고해상도 격자강우 정보가 제공되고 있다. 본 연구에서는 이러한 전파강수관측소의 정량적 추정강우를 홍수예보에 활용하기 위해서 강우기반의 하천 수위 예측 기법인 하천흐름계산도표를 개발하였다. 하천흐름계산도표가 개발된 지역은 삼척 전파강수관측소의 관측 반경에 포함되는 삼척오십천 유역이며, 해당지역은 수변공원으로 조성되어 있어 시민의 접근이 용이하여 하천 수위 급상승으로 인해 피해가능성이 높은 지역이다. 2019년과 2020년 호우사례를 대상으로 개발된 하천흐름계산도표에 전파강수관측소의 정량적 추정강우를 적용하여 하천수위 상승 예측성을 평가하였다. 또한 비교대상으로 강우관측소 강우자료와 환경부 대형 강우레이더 강우자료의 적용결과를 함께 비교하였다. 비차등 위상차 기반의 강우추정 기법을 적용하여 산정된 삼척 전파강수관측소의 정량강우는 기존의 강우추정 결과(SRI, CMP_HFC)보다 강우추정 정확도가 향상된 것을 확인하였다. 특히, 10km 관측 반경을 기준으로 분석하면 정확도가 상대적으로 높았다. 삼척 전파강수관측소 추정강우를 하천흐름 계산도표에 적용한 결과, 2020년 9월 7일 호우에 의해 삼척오십천 유역에서 관심수위 초과(10:20), 주의수위 초과(11:20)가 발생하였는데, 삼척 전파강수관측소 추정강우가 관심수위 초과 1시간 50분 전에 수위상승을 예측하였고, 주의수위 초과 30분전에 수위상승을 예측하였다. 이를 통해 개발된 하천흐름계산도표와 삼척 전파강수관측소의 홍수예보 활용 가능성을 확인하였다.

  • PDF

Training of Artificial Neural Network for water level forecasting (하천수위 예측을 위한 인공신경망 학습에 관한 연구)

  • Jung, Ji Won;Ler, Lian Guey
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.563-563
    • /
    • 2016
  • 국내 강우발생은 기상학적인 영향으로 인하여 장마기간(6~8월)에 집중되어있으며, 최근에는 기후변화의 영향으로 짧은 시간에 많은 양의 강우가 발생하는 집중호우의 발생빈도가 증가하고 있다. 또한, 시간과 지역에 관계없이 국지성호우의 발생빈도 역시 높아지고 있다. 집중호우와 국지성호우는 짧은 시간에 하천수위를 상승시키므로 홍수로 인한 물적 피해가 크게 발생된다. 국토교통부에서는 그동안 홍수예보에 필수적인 우량, 하천수위 등 기초자료를 확보하기 위해 관측소(500여개) 및 홍수량 측정지점(80여개)을 확대하였으며, 관측된 자료는 모두 전산망에 기록, 보관하고 있다. 또한 한강, 금강, 낙동강, 영산강의 경우 홍수통제소에서 홍수량 예측 계산 등을 통해 홍수 예경보를 실시하고 있다. 하지만 4대강을 제외한 중소하천의 홍수예경보에 대한 정보를 찾아볼 수 없으며, 현재 연구가 진행중이다. 강우-유출모형을 활용하여 중소하천의 강우와 유출의 관계를 해석하는 과정은 다양한 인자를 고려해야하지만 중소하천의 경우 하천단면 등 하천자료가 충분히 구축되어 있지 못하므로 유출량 계산에 많은 어려움을 겪고 있다. 이에 본 연구에서는 중소하천의 홍수위 예측을 위해 한강의 과거 수위와 현재 수위만을 활용하여 인공신경망(Artificial Neural Network, ANN)의 학습을 진행하였다. 첫 번째로 ANN을 활용하여 한강유역 중 홍수예보지점(잠수교)의 수위변화에 직접적으로 연관이 있는 5개 수위관측소를 선정하였으며, 과거 장마기간(6~8월)관측 자료를 활용하였다. 두 번째로 홍수예보지점(잠수교)과 5개 수위관측소의 과거 관측수위(2009~2014년)를 인공신경망의 학습자료로 활용하여 모델을 훈련시켰으며, 마지막으로 2015년의 관측수위를 이용하여 ANN의 학습정확도에 대한 검증을 하였다. 본 과정은 수위예측을 위한 ANN의 훈련단계로 Training/Test를 반복하였으며, 학습결과와 2015년 관측수위 비교시 $R^2=0.987$과 상관계수 r=0.994로 유사한 패턴을 보였으나 최대치와 최소치에 대한 오차가 있음을 확인하였다.

  • PDF

Prediction of River Discharge by Using Mean Velocity Equation (평균유속공식을 활용한 하천 유량예측)

  • Choo, Tai-Ho;Chae, Soo-Kwon;Yoon, Hyeon-Cheol;Song, Jung-Ju
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.135-139
    • /
    • 2012
  • 하천에서의 정확한 유량 산정은 하천의 설계 및 운영 유지에 매우 중요한 요소이다. 현재 하천의 유량 생산은 수위-유량관계곡선을 통하여 이루어지고 있다. 수위-유량관계곡선법은 측정된 수위와 유량자료의 관계를 바탕으로 홍수기 때의 유량을 회귀 추정법으로 예측하여 사용하는 방법이다. 비교적 간편하게, 특히 측정이 어려운 홍수기 때의 유량을 예측하여 사용할 수 있다는 장점을 가지고 있지만 수위와 유량만의 관계를 사용하므로 하천의 수리학적 특성을 반영하기 곤란하기 때문에 기본적으로 개선되어야 할 사항이 있다. 따라서, 본 연구에서는 하천유량을 예측하는 새로운 방법론의 하나로 KSCE에 기 게재된 Choo 등(2011)의 방법에 따라, 개수로에서 널리 사용되어 오고 있는 Manning식과 Chezy식을 활용하여 하천의 전체적인 특성을 잘 반영하는 특성조도계수 n과 특성Chezy계수 C를 사용하여 하천의 유량을 예측하였다. 실험실 직선수로에서 측정된 정류 자료와 객관성 있는 해외 하천 유량측정 자료를 사용하여 증명하였고 결정계수 0.8 정도 수준의 높은 정확성을 보여주는 성과를 나타내었다. 따라서 본 연구결과를 통해 하천의 수리학적 특성을 반영하면서도 간단하게 유량을 예측할 수 있는 방법으로 실무에서 간편하게 활용될 수 있을 것으로 기대한다.

  • PDF

Discharge prediction in a stream using ANN technique (인공신경망 기법을 이용한 하천에서 유량 예측)

  • Choi, Seongwook;Kang, Dongwon;Choi, Sung-Uk
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.116-116
    • /
    • 2022
  • 현재 인공지능은 공학적 문제 해결 외에도 다양한 분야에 적용되어 매우 친숙하게 활용되고 있다. 특히 하천 분야에서는 시설물 주위 국부세굴 또는 어류 서식처 분석과 같이 관련 변수들의 복잡성으로 적절한 결과를 쉽게 얻어내기 어려운 것들에 적용되고 있다. 그 외에도 인공지능 기법을 적용할 수 있는 분야로 하천에서의 수위를 이용하여 유량을 예측하는 것이 있다. 기존에는 수위-유량 관계 곡선을 만들어 수위를 이용하여 유량을 예측하였으나, 관계곡선 제작에 활용된 수위와 유량 범위에서 벗어나는 경우 과다한 유량으로 계산되는 경우가 있다. 본 연구에서는 인공지능 기법 중 하나인 인공신경망 기법을 사용하여 하천의 유량 예측을 수행하였다. 기존 국가수자원관리종합정보시스템에 기록된 자료를 활용하여 수위와 유량 자료를ANN에 학습시키고 학습에 활용하지 않은 시기의 자료를 이용하여 전반적인 유량 예측 성능과 루프형 수위-유량 관계 곡선을 생성할 수 있는지를 검토하였다. 또한 학습 범위를 벗어난 홍수량에 대한 측정 결과를 검토하고, 기존 수위-유량 관계곡선과 비교하여 그 성능을 검토하였다.

  • PDF

A Study on Water Level Forecasting by Heavy Rainfall using Neural Network (신경망 모형을 이용한 집중호우시 수위예측에 관한 연구)

  • Jun, Kye-Won;Lee, Ho-Jin
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.291-291
    • /
    • 2011
  • 우리나라는 기상학적 지리학적 영향으로 여름철에 강우가 집중하여 내리며 최근에는 짧은 시간에 많은 양의 강우가 내리는 집중호우의 발생빈도가 증가하고 있다. 이러한 집중호우는 하천의 수위를 증가시켜 하천범람 및 제방붕괴의 위험을 가져와 많은 재산과 인명피해를 가져올 수 있다. 하천 수위의 예측은 기존에 물리적, 개념적 모형을 통해 강우-유출을 해석하는 과정에서 주로 다루어 졌다. 그러나 자연현상인 강우와 유출관계를 규명하는 과정은 지역의 다양한 특성, 강우의 시 공간적 분포 등 복잡하고 다양한 인자를 고려해야 한다는 문제와 부딪쳐 많은 어려움을 겪어왔다. 따라서 본 연구에서는 복잡한 비선형 과정들의 모형화가 가능한 인공 신경망 모형을 이용하여 수위예측 모형을 구성하고 100mm이상의 강우가 연속해서 내린 호우사상을 훈련시켜 집중호우 발생시 수위예측에 활용하고자 하였다. 이를 위해 구성된 인공신경망 모형을 금강유역 보청천에 적용한 결과 중소하천유역인 보청천 유역의 홍수위 예측에 적용이 가능함을 확인하였다.

  • PDF

Development of locally customized river level prediction model based on AI for ASEAN countries (ASEAN국가 현지맞춤형 인공지능 하천수위예측 모형 개발)

  • Sooyoung Kim;Jaewon Jung;Seungho Lee;Kwang-Seok Yoon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.333-333
    • /
    • 2023
  • 기후변화로 인해 전지구적인 이상기후현상이 빈번하게 발생하고 있으며 지구온도와 해수면상승과 더불어 강우패턴의 변화가 세계적인 문제로 대두되고 있다. 특히 아세안 국가의 경우 태풍 및 집중호우에 대한 침수피해의 빈발로 2,000만명 이상이 피해를 입은 것으로 나타났다. 이러한 윈인으로는 자연재해에 의한 인명 및 재산피해관련 대응기술의 개발 및 대응조직의 전문성이 미흡하다는 것이 가장 큰 원인으로 제시되고 있다. 이에 많은 국가 및 기관에서 재난 대응 기술을 ODA사업을 통해 지원하고 있다. 우리나라에서도 지속적인 ODA사업으로 재난 대응 기술, 그 중에서도 홍수대응 기술을 적극적으로 보급하고 있다. 본 연구에서는 ASEAN국가 현지 맞춤형 인공지능 하천수위예측 모형을 개발하여 ASEAN국가의 홍수대응 능력을 향상시키고자 하였다. 연구대상으로는 관측데이터의 수집이 용이하고 양질의 관측자료를 장기간 확보할 수 있는 필리핀의 Montalban 관측소를 대상으로 하였다. Montalban 수위관측소는 마닐라를 관통하는 마리키나 강의 상류에 위치하고 있다. 주변에는 상류쪽에 Mt. Oro 강우관측소가 있으며 해당 관측소의 강우자료와 Montalban 관측소의 수위자료를 입력자료로 활용하여 최대 3시간까지 수위를 예측하였다. 예측수위에 대한 적합도 지표로 NSE(Nash-Sutcliffe model efficiency coefficient)를 사용하였으며 2시간 예측까지는 0.8이상의 유의미한 결과를 나타내 홍수예보에 활용할 수 있을 것으로 판단되나, 3시간 예측결과는 홍수예보에 활용하기 어려운 것으로 판단하였다. 이는 Mt. Oro관측소에 내린 강우가 Montalban 관측소에 도달하기까지 소요되는 시간이 3시간 이내이기 때문으로 판단된다. 관측소의 수위자료와 상류에 위치한 강우관측소의 장기간 고품질의 관측자료가 존재한다면 높은 정확도의 예측결과를 도출 할 수 있을 것으로 판단된다.

  • PDF

Downstream Flood Stage Forecasting and Warning using Serial-Parallel River Stage (직렬/병렬 하천수위를 이용한 하류 홍수위 예경보기법)

  • Choo, Yean-Moon;Kwon, Ki-Dae;Jee, Hong-Ki
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.301-304
    • /
    • 2012
  • 홍수예경보는 강우로 인하여 발생되는 홍수의 규모와 시간을 가능한 한 정확하고 빨리 예측하여 홍수에 대비할 수 있도록 유관기관 및 지역주민에게 사전에 홍수에 관한 정보 즉 예측되는 수위와 시간을 제공함으로써 홍수로부터의 피해를 최소화하는 것이다. 이와 같은 목적을 성공적으로 완수하기 위해서는 홍수시 급변하는 하천유량에 영향을 미치는 모든 수문학적 기상학적 자료를 신속 정확하게 수집할 수 있는 관측 시스템의 구축 뿐 아니라 이들 수집된 자료를 이용하여 실시간 홍수추적을 할 수 있는 효율적인 유출량 계산모형이 조화를 이룰 때 가능하다. 이에 본 연구에서는 중 소하천에서 홍수예경보를 위한 지능형 U-River 시스템의 실시간 모니터링 기술을 조사하고 하천수위를 이용한 예측시스템에 대해 연구하였다. 기존의 홍수예경보의 문제점을 해결하기 위해 간단한 입력자료만으로 홍수예측이 가능한 인공지능 기반의 신경망 모형을 이용 하였으며, 예측 모형의 효율성과 적용성을 높이기 위해 유사한 수문 사상을 가지는 상 하류간 입력 자료를 동시에 사용하였다. 또한 하천수위를 이용한 모델의 수행은 각 지점별 훈련성과를 토대로 최적의 은닉층 노드수를 선발하여 실시간 수위예측에 활용하였으며 수치적 기준을 적용하여 실측 수위와 모형에 의해 예측된 수위를 이용하여 평가하였다.

  • PDF