• 제목/요약/키워드: 하천만곡부

검색결과 137건 처리시간 0.022초

2차원 수치모형을 이용한 남한강과 섬강 합류부 구간의 흐름 및 하상변동 해석 (Numerical analysis of flow and bed change at a confluence of the Namhan River and the Seom River using a two-dimensional model)

  • 박문형;김형석;백창현
    • 한국수자원학회논문집
    • /
    • 제51권12호
    • /
    • pp.1273-1284
    • /
    • 2018
  • 본 연구에서는 4대강 살리기 사업 후 퇴적현상이 지배적으로 발생하는 남한강과 섬강 합류부 구간을 대상으로 2차원 수치모형인 CCHE2D 모형을 이용하여 하천의 흐름 및 하상변동에 대한 해석을 수행하였다. 대상지점 합류부는 남한강 본류의 만곡부에 지류 섬강이 유입되는 특성을 갖는다. CCHE2D 모형은 비평형 유사이송을 해석하며 소류사와 부유사 조정거리가 중요한 입력변수로 대상지점에서는 소류사 조정거리가 하상변동에 가장 큰 영향을 주는 것으로 나타났다. 수치모의 결과 유량비($Q_r$) 변화가 남한강과 섬강 합류부 지점에서 흐름 및 하상변동에 영향을 미쳤으며, $Q_r{\leq}2.5$인 경우에는 합류전 본류의 유속이 증가하여 흐름박리구역을 감소시켰으며 이로 인해 합류부 내측의 퇴적이 감소하였다. $Q_r$>2.5이면 합류부 구간에 퇴적이 증가하여 사주가 형성될 가능성이 높은 것으로 나타났다. 수치모의를 통해 2013년에 발생한 유량비 변화에 의해 합류부에 고정사주가 형성된 것을 알 수 있었다.

하도준설이 사행하천에 미치는 수리학적 영향 분석 (Analysis of Hydraulic Effect by River Dredging in a Meandering Channel)

  • 김태형;김병현;한건연
    • 한국지리정보학회지
    • /
    • 제18권4호
    • /
    • pp.14-30
    • /
    • 2015
  • 본 논문에서는 하상퇴적이 심한 사행하천에서의 월류로 인한 침수피해와 제방 세굴 및 제방유실에 대한 피해를 저감시키기 위한 구조적 대안으로, 준설이 얻을 수 있는 수리학적 효과를 분석하고자 하였다. 사행사천 구간에서의 수리해석을 위해 2차원 수리해석 모형인 RMA-2 모형을 선정하였고, 준설 전의 현재 단면과 준설 후의 가정 단면을 GIS tool을 이용하여 구현한 후 2차원 유한요소격자를 구성하여 모형을 구동하였다. 준설 전 후에 대해 계산된 수위, 수심, 유속, 그리고 소류력을 현재의 계획홍수위와 비교하였고, 편수위가 발생한 지점에서 최대홍수위를 비교 분석한 결과 계획홍수위 대비 최대 0.58m의 수위저감 효과를 나타내었다. 분석구간 내에 위치한 제방에서의 소류력은 전 구간에 대해 평균 42~67% 가량 감소됨을 확인할 수 있었다. 이와 같은 결과를 통해 하천 사행구간에 위치한 유수의 흐름을 방해하는 하상퇴적물의 준설이 만곡부에 위치한 제방에서의 월류 및 세굴에 대한 위험도를 저감시키고 주변 농경지의 침수피해를 경감시킬 수 있는 적절한 구조적 대책이 될 수 있음을 확인할 수 있었다.

댐 하류 하천에서 발전방류로 인한 어류 물리서식처 변화 수치모의 (Numerical Investigations of Physical Habitat Changes for Fish induced by the Hydropeaking in the Downstream River of Dam)

  • 강형식;임동균;김규호
    • 대한토목학회논문집
    • /
    • 제30권2B호
    • /
    • pp.211-217
    • /
    • 2010
  • 본 연구에서는 2차원 수치모형을 이용하여 댐 발전방류로 인한 어류 물리 서식처의 변화를 분석하였다. 이를 위해 River2D 모형을 이용하였으며, 대상 어종은 피라미를 선정하였다. 먼저 구축된 모형의 검증을 위하여 계산된 수위를 기존의 현장 측정 데이터와 비교하였으며 잘 일치함을 보였다. 한편, 피라미의 성장 단계별 가중가용면적 및 유량 별 복합서식처적합도 분포도를 계산하여 비교하였다. 그 결과, 댐 하류 만곡부 부근에서 피라미 서식처가 가장 좋은 것으로 나타났으며, 약 9 $m^3/s$의 유량일 때 성어기 피라미의 가중가용면적이 최대의 값을 이루는 것으로 예측되었다. 또한 일주일 간의 발전 방류량 및 갈수량 조건에 대한 계산 결과, 일주일 평균 발전 방류량이 갈수량에 비해 약 39% 더 큰 것으로 나타났지만 계산된 가중가용면적은 약 60-100% 작은 것으로 예측되었다. 즉, 발전 방류로 인해 하류단 서식처의 면적이 크게 감소되는 것을 확인하였다.

옥천천 유역의 하천과 만곡부에서 조류 생장 잠재력 측정 (Algal Growth Potential Test (AGPT) in Streams and Embayment of the Okchon Stream Watershed, Korea)

  • 신재기;김동섭;이혜근;맹승진;황순진
    • ALGAE
    • /
    • 제18권2호
    • /
    • pp.169-176
    • /
    • 2003
  • Algal growth potential test (AGPT) bioassay were conducted to evaluate the stream and reservoir water in the Okchon Stream Watershed during May to September 2002. The water quality of the stream water was clean in the upstream, deteriorating toward the downstream. In particular, SRP and $NH_4$ significantly increased due to treated wastewater. The average AGPT value of the Okchon Stream watershed was 22.4 mg dw ${\cdot}l^{-1}$, with the range of 0- 195.7 mg dw ${\cdot}l^{-1}$. AGPT value was the highest immediately after inflow of treated wastewater, averaging 91.3 mg dw${\cdot}l^{-1}$. AGPT was highly correlated with SRP, $NH_4$ and TIN factors, with P having the greatest effect on the growth of algae. Among N components, $NH_4$ was preferred to $NO_3$ for the growth of algae. Likewise, AGPT was closely linked to meteological and hydrological effects and development of natural phytoplankton. In survey stations, mesotrophic, eutrophic and hypertrophic conditions accounted for 43%, 21% and 36%, respectively. On the other hand, hypertrophic condition focused on the downstream reaches. AGPT was useful in determining not only the limiting nutrients but also the water fertility for the growth of algae. Based on the AGPT results, the management of point sources for water pollution in treated wastewater was important in the protection of aquatic environment in the stream and embayment.

댐 하류하천에서 유사공급에 의한 하도의 지형변화 수치모의 분석(영주댐을 중심으로) (Numerical analysis of the morphological changes by sediment supply at the downstream channel of Youngju dam)

  • 강기호;장창래;이기하;정관수
    • 한국수자원학회논문집
    • /
    • 제49권8호
    • /
    • pp.693-705
    • /
    • 2016
  • 본 연구에서는 영주댐 하류하천에서 유사공급에 의한 하도의 지형변화와 그 효과를 수치실험을 통하여 분석하였다. 본 수치모형의 모의 결과는 실내실험에서 보여준 토사더미의 이송과 확산과정과 잘 일치하였다. 초기에 토사가 공급된 구간에서 수면이 불연속적으로 형성되는 현상이 발생하지만, 시간이 증가함에 따라 하상고가 저하되면서 완만한 수면형을 형성하였다. 유사공급을 효과적으로 수행하기 위하여 댐 직하류에서 여울이 형성된 만곡부를 유사공급 위치로 선정하였다. 시간이 증가함에 따라 공급된 유사는 하류로 쓸려 내려가고 하상고는 저하되었으며, 유속이 감소되는 하류지점에서 퇴적되었다. 시간이 증가함에 따라, 하상고의 변화가 증가하고, 상류보다는 하류에서 크게 변화하였다. 유량이 증가함에 따라 횡방향 하상고 변화를 나타내는 하상기복지수는 증가하였으며, 하도의 역동성과 유사공급 효과가 큰 것을 알 수 있다.

경주 월성의 해자(垓字)에 대한 고찰 (Consideration on the Moat of Wolseong Fortress at Gyuongju)

  • 정용조;박주성;심우경
    • 한국전통조경학회지
    • /
    • 제28권2호
    • /
    • pp.37-44
    • /
    • 2010
  • 우리나라는 다른 나라들과는 다르게 외세의 침입을 도성과 산성의 방어 체계로 막았다. 이러한 방어 체계를 가진 것이 해자의 기능 중 하나이며, 해자는 오랜 역사성을 가지고 있는데 비해 연구가 미비한 실정이다. 본 연구는 경주 월성의 개요와 변천과정을 살펴보고, 경주 월성 해자의 규모와 축조방식 등 월성 해자의 특성을 파악해 보고자 한 것으로 문헌조사와 현장조사 및 인터뷰 등을 통해 고찰해 본 결과, 경주 월성의 해자는 월성 남편을 만곡되게 흐르는 자연하천(남천)을 그대로 이용한 자연해자와 성벽 기단부를 따라 평면 부정형의 못을 파고 냇돌로 호한을 구축한 연못형 해자, 그리고 연못형 해자를 메우고 정다듬한 화강암을 평면 삼각형으로 정연하게 쌓은 월성 동편 석축 해자로 구분되며, 이 중 연못형 해자는 월성 동 북 서편에서 확인되었는데, 동에서 서로 경사를 두어 독립된 연못처럼 단을 지워 조성하였다.

긴구배수로 감세공의 Filp Bucket형 이용연구 (Experimental Study of Flip-Bucket Type Hydraulic Energy Dissipator on Steep slope Channel)

  • 김영배
    • 한국농공학회지
    • /
    • 제13권1호
    • /
    • pp.2206-2217
    • /
    • 1971
  • 본연구(本硏究)는 Dam 또는 여수토(餘水吐) 방수로등(放水路等) 급구배수로(急勾配水路)에 고속(高速)으로 유하(流下)되는 물을 감세처리(減勢處理)하기 (爲)한 감세공형식중(減勢工型式中) 보다도 구조(構造)가 간단(簡單)하고 시공(施工)이 용역(容易)하며 경제성(經濟性)이 높은 Flip Bucket 형감세공(型減勢工)에 의(義)하여 수리특성(水理特性)에 따른 일반적(一般的) 적용조건(適用條件)과 설계시공(設計施工)의 발전(發展)을 도모(圖謀)하기 위(爲)하여 연구(硏究)한 것으로서 그 결과(結果)를 요약(要約)하면 다음과 같다. 1. Flip Bucket의 수리특성(水理特性)과 일반적(一般的) 적용조건(適用條件) Flip Bucket는 일반적(一般的)으로 다음과 같은 조건(條件)을 갖일 때에 채용(採用)할 수 있다. 가. 하류하천(下流河川)의 수위(水位)가 얕어서 도수형(跳水型) 감세공법(減勢工法)을 이용(利用)하며는 막대(莫大)한 공사비(工事費)를 요(要)하게 될 때 나. 하류하천(下流河川)의 하상(河床)이 안정(安定)할 수 있는 양질(良質)의 암반(岩盤)일 경우 다. 하류하천(下流河川)은 여수토(餘水吐) 방수로(放水路)의 중심선(中心線)에 연(沿)하여 적어도 전수두(全水頭)의 $3{\sim}5$배(倍)되는 거리까지는 하심(河心)이 거이 직선(直線)인 여건(與件)에 있을 경우 라. 방사수맥(放射水脈)의 낙하지점(落下地點)을 중심(中心)으로 해서 주위(周圍)에 민가(民家), 경지(耕地), 중요시설물등(重要施設物等)이 없고 수맥낙하(水脈落下)로 인(因)하여 생기는 소음(騷音), 토사붕양(土砂崩壤), 물방울등(等)으로 피해(被害)를 받을 염려(念慮)가 없을 경우 2. 설계(設計) 및 시공상(施工上)의 적용사항(適用事項) 1항(項)과 같은 현지조건(現地條件)을 갖이고 실제(實際) Flip Bucket 형(型)으로 설계(設計) 또는 시공(施工)을 할 경우 고려(考慮)하여야 할 사항(事項)은 가. Bucket의 반경(半徑)(R)은 $R=7h_2$로 적용(適用)이 가능(可能)하다. ($h_2$: Bucket 시점(始點)의 평균수심(平均水深) 나. 본형식(本型式)은 한계지면이하(限界施面以下) 방수로(放水路)의 구배(勾配)가 $0.25<\frac{H}{L}<0.75$의 수로(水路)에서만 채용(採用)한다. 다. 방사수맥(放射水脈)은 가급적(可及的) 하상면(河床面)에 직각(直角)에 가까운 각도(角度)로 낙하(落下)시켜야 하며 그러기 위(爲)해서는 수맥(水脈)을 높이 또는 멀리 방사(放射)시켜야 한다. 상기목적(上記目的)을 만족(滿足)시키는 Flip의 앙각(仰角)은 $\theta=30^{\circ}{\sim}40^{\circ}$를 적용(適用)하는 것이 좋다. 라. 상기(上記) 가${\sim}$다항(項)을 적용(適用)했을 때 유량별(流量別) 방사수맥(放射水脈)의 낙하거리(落下距離)는 그림-4.1에 의(依)하여 쉽게 추정(推定)할 수 있다.(단 실물(實物)에 대(對)한 제량(諸量)의 환산(換算)은 표(表-3.2)에 제시(提示)된 Froude 상사율(相似律)을 적용(適用)할 것) 마. Bucket 부(部)에 Chute Blocks를 설치(設置)하는 것은 방사수맥(放射水脈)의 낙하범위(落下範圍)를 확장(擴張), Energy를 분배(分配)시켜 주므로 하류하상(下流河床)의 세굴심(洗掘深)을 감소(減少)시키는 이점(利點)은 있으나 소맥낙하거리(小脈落下距離)는 다소(多少) 단축(短縮)되는 경향(傾向)이 있다. 바. 수맥낙하점(水脈落下點)에는 세굴(洗掘)에 의(依)한 깊은 Water Cushion을 형성(形成)한다. 최종적(最終的)으로 도달(到達)하는 Water Cushion의 깊이는 하상구성재료(河床構成材料)의 조성(組成)과 재질(材質)에는 거이 무관(無關)하며 단위폭당(單位幅當)의 유량(流量)과 전수두(全水頭)에 따라 소요(所要) 깊이까지 세굴(洗掘)된다. 사. 빈도(頻度)가 잦은 소유량(小流量)에서는 수맥(水脈)의 낙하거리(落下距離)가 단축(短縮)되어 Flip Bucket 하류단(下流端) 직하류(直下流)를 세굴(洗掘)하게 되므 Bucket로 하류단(下流端)은 견고(堅固)한 암반(巖盤)에 충분(充分)한 깊이까지 삽입절연(揷入絶緣)시켜 수맥하부(水脈下部)의 공기유통(空氣流通)을 원활(圓滑)하게 하므로서 Cavitation을 방지(防止)할 수 있다. 지하벽(直下壁)은 보통(普通) Bucket 말단(末端)에서 약(約) $0.3{\sim}0.5m$ 정도(程度)는 수평(水平)으로 하고 수평(水平)과 내각(內角)이 $120^{\circ}{\sim}130^{\circ}$되게 절단(切斷)하여 적당(適當)한 곳에서 수직(垂直)으로 하여 암반(巖盤)에 견고(堅固)히 절연(絶緣)시킨다. 아. 하상(河床)에 돌입(突入)한 고속(高速) Jet는 수두(水頭)의 크기에 따라 막대(莫大)한 Energy의 일부(一部)를 함유(含有)한채 하상면상(河床面上)을 유하(流下)하게 되므로 이 영향(影響)을 받는 하류제방(下流堤防)에는 상당구간(相當區間)까지 사석(捨石) 또는 기타(其他)의 방호조치(防護措置)를 강구(講究)해야 한다. 자. 낙하지점(落下地點)의 조건(條件)으로 보아 자연낙하지점(自然落下地點)보다 더욱 양호(良好)한 지점(地點)이 주위(周圍)에 구비(具備)되어 있을 경우에는 별도(別途)로 수리실험(水理實驗)을 통(通)하여 수맥(水脈)의 변이방법(變移方法)을 강구(講究)해야 한다. 차. 수로(水路)의 중심선(中心線)이 만곡(灣曲)을 갖던가 또는 본연구(本硏究) 범위(範圍)에서 제외(除外)된 구조물(構造物)에서 본형식(本型式)을 계획(計劃)할 때는 별도(別途)로 수리실험(水理實驗)을 행(行)하여야 한다.

  • PDF