• Title/Summary/Keyword: 하중 변위 곡선

Search Result 293, Processing Time 0.026 seconds

Development of Nonlinear Spring Modeling Technique of Group Suction Piles in Clay (점성토 지반에 근입된 그룹 석션파일에 대한 비선형 스프링 모델링 기법 개발)

  • Lee, Si-Hoon;Lee, Ju-Hyung;Tran, Xuan Nghiem;Kim, Sung-Ryul
    • Journal of the Korean Geosynthetics Society
    • /
    • v.14 no.1
    • /
    • pp.1-10
    • /
    • 2015
  • Recently, several researches on the development of new economical anchor systems have been performed to support floating structures. This study focused on the group suction piles, which connect mid-sized suction piles instead of a single suction pile with large-diameter. The group suction pile shows the complex bearing behavior with translation and rotation, so it is difficult to apply conventional design methods. Therefore, the numerical modeling technique was developed to evaluate the horizontal bearing capacity of the group suction piles in clay. The technique models suction piles as beam elements and soil reaction as non-linear springs. To analyze the applicability of the modeling, the horizontal load-movement curves of the proposed modeling were compared with those of three-dimensional finite element analyses. The comparison showed that the modeling underestimates the capacity and overestimate the displacement corresponding to the maximum capacity. Therefore, the correction factors for the horizontal soil resistance was proposed to match the bearing capacity from the three-dimensional finite element analyses.

Test Results on the Type of Beam-to-Column Connection using SHN490 Steel (SHN490강종의 보-기둥 접합부 형태에 따른 실험적 연구)

  • Kim, So Yeong;Byeon, Sang Min;Lee, Ho;Shin, Kyung Jae
    • Journal of Korean Society of Steel Construction
    • /
    • v.27 no.3
    • /
    • pp.311-321
    • /
    • 2015
  • In this study, an experimental study to evaluate the seismic performance of beam-to-column connection for medium and low-rise building was conducted. Five connections using SHN490 steel were made with test variables such as flange welded or bolted, web welded or bolted. Specimen SHN-W-W is web welded and flange welded type. Specimen SHN-W-B is web welded and flange bolted type. Specimen SHN-B-W is web bolted and flange welded type. Specimen SHN-B-B is web bolted and flange bolted type. Specimen SHN-EP is a connection with the end plate to the beam ends. Cyclic loadings was applied at the tip of beam following KBC2009 load protocol. The load vs rotation curves for different connection are shown and final failure mode shapes are summarized. The connections are classified in terms of stiffness and strength as semi-rigid or rigid connection. Energy dissipation capacities for seismic performance evaluation were compared.

Evaluation of Inertial Interaction of a Multi-degree-of-freedom Structure during a Large-scale 1-g Shaking Table Test (대형 진동대 실험을 이용한 다자유도 구조물의 관성 상호작용 평가)

  • Chae, Jonghoon;Yoon, Hyungchul;Jung, Jongwon
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.6
    • /
    • pp.17-28
    • /
    • 2022
  • The effect of the soil-structure interaction (SSI) on has been recently evaluated in shaking table tests. However, most of these tests were conducted on single-degree-of-freedom (SDOF) superstructures and a single-pile. This study investigates the inertial interaction effect of a multi-degree-of-freedom (MDOF) superstructure system with a group piles on a large-scale shaking table test. Whereas the SDOF superstructure system shows a single-frequency amplification tendency, the MDOF superstructure system exhibited amplification tendencies of the acceleration phase and frequency responses for multiple frequencies. In addition, the amplification phenomenon between the footing and the column-type superstructure exceeded that between the footing and the wall-type superstructure, indicating a greater inertial interaction effect of the column-type superstructure. The relationship between shear force and inertial force, the relative vertical and horizontal displacements on the footing was figured out. Also, the ananlysis of dynamic p-y curve at each depth was conducted. In summary, the MDOF and SDOP superstructure systems exhibited different behaviors and the column-type superstructure exerted a higher interaction effect than the wall-type superstructure.

Analysis of Stability and Behavior of Slope with Solar Power Facilities Considering Seepage of Rainfall (태양광 발전시설이 설치된 사면의 강우시 침투를 고려한 안정성 및 거동 분석)

  • Yu, Jeong-Yeon;Lee, Dong-Gun;Song, Ki-Il
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.7
    • /
    • pp.57-67
    • /
    • 2023
  • Slope failures during rainfall have been observed in mountainous areas of South Korea as a result of the presence of solar power facilities. The seepage behavior and pore pressure distribution differ from typical slopes due to the presence of impermeable solar panels, and the load imposed by the solar power structures also affects the slope behavior. This study aims to develop a method for evaluating the stability of slopes with solar power facilities and to analyze vulnerable points by considering the maximum slope displacement. To assess the slope stability and predict behavior while considering rainfall seepage, a combined seepage analysis and finite difference method numerical analysis were employed. For the selected site, various variables were assumed, including parameters related to the Soil Water Characteristic Curve, strength parameters that satisfy the Mohr-Coulomb failure criterion, soil properties, and topographic factors such as slope angle and bedrock depth. The factors with the most significant influence on the factor of safety (FOS) were identified. The presence of solar power facilities was found to affect the seepage distribution and FOS, resulting in a decreasing trend due to rainfall seepage. The maximum displacement points were concentrated near the upper (crest) and lower (toe) sections of the slope.

The Fire Resistant Performance of RC Column with Confined Lateral Reinforcement According to Fire Exposure Condition (횡방향 철근으로 구속된 철근콘크리트 기둥의 화재 노출조건에 따른 내화성능)

  • Choi, Kwang Ho
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.4
    • /
    • pp.311-318
    • /
    • 2018
  • When reinforced concrete structures are exposed to fire, their mechanical properties such as compressive strength, elasticity coefficient and rebar yield strength, are degraded. Therefore, the structure's damage assessment is essential in determining whether to dismantle or augment the structure after a fire. In this study, the confinement effect of lateral reinforcement of RC column according to the numbers of fire exposure face and stirrup was verified by fire resistant test with the heating temperatures of $400^{\circ}C$, $600^{\circ}C$ and $800^{\circ}C$. The test results showed that the peak stress decreases and peak strain increases as the temperature is getting higher, also transverse ties are helpful in improving the compressive resistance of concrete subjected to high temperature. Based on the results of this study, the residual stress of confined concrete under thermal damage is higher at the condition of more lateral reinforcement ratio and less fire exposure faces. The decreasing ratio of elastic modulus of more confined and less exposure faces from the relationship of load and displacement was also smaller than that of opposite conditions.

The 33-mode Dielectric and Piezoelectric Properties of PIN-PMN-PT Single Crystal under Stress and Electric Field (압축하중 및 전계 인가에 따른 PIN-PMN-PT 단결정의 33-모드 유전 및 압전특성)

  • Lim, Jae Gwang;Park, Jae Hwan;Lee, Jeongho;Lee, Sang Goo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.27 no.4
    • /
    • pp.91-96
    • /
    • 2020
  • The 33-mode dielectric and piezoelectric properties of Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 piezoelectric single crystals were measured under large electric field and compressive stress. The phase transition from the low temperature rhombohedral to the high temperature tetragonal structure was observed in the range of 110~140℃, and the Curie temperature changing to the cubic structure was about 165℃. The polarization change according to the compressive stress and electric field was measured. Relative dielectric constant was calculated from the slope of the polarization curve applied to the electric field, and the calculated relative dielectric constant increased as the applied stress increased, and the relative dielectric constant decreased as the applied electric field increased. The strain according to the compressive stress and electric field change was measured, the piezoelectric constant was calculated from the slope of the curve, and the phase transition according to the application of pressure was confirmed. In the case of practical application as an underwater or medical ultrasonic actuator, it is necessary to properly design the magnitude of the compressive stress applied to the device and the DC bias in order to maintain linear driving.

Dynamic Modeling of Semi-active Squeeze Mode MR Damper for Structural Vibration Control (구조물의 진동 제어를 위한 압착식 MR 감쇠기의 동적 모델링)

  • Heo, Gwang-Hee;Jeon, Joon-Ryong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.2 s.54
    • /
    • pp.172-180
    • /
    • 2009
  • Normally in order to build a semi-active control system equipped with MR damper, the dynamic modeling of the damper is required to numerically predict its dynamic damping force and also its behavioral characteristics. For the dynamic modeling of the MR damper, this paper attempts to predict and evaluate its dynamic behavior by applying specifically both a power model and a Bingham model. Dynamic loading tests were performed on the squeeze type of damper specially designed for this research, and force-displacement hysteresis loops confirmed the effectiveness of the damper as a semi-active control device. In the meantime, in order to evaluate the effectiveness of each model applied, the model parameter for each model was identified. On the basis of the parameter, we derived the error ratio of the force-velocity relationship curve and the dynamic damping force, which was contrasted and compared with the experimental results of the squeeze type of damper. Finally, the squeeze type of MR damper developed in this research was proved to be valid as a semi-active control device, and also the evaluation of the two dynamic models showed they were working fine so that they were likely to be easily utilized to numerically predict the dynamic characteristics of any dampers with MR fluid as well as the squeeze type of MR damper.

Seismic Performance and Flexural Over-strength of Hollow Circular RC Column with Longitudinal Steel Ratio 2.017% (축방향철근비 2.017%인 중공 원형 RC 기둥의 내진성능과 휨 초과강도)

  • Ko, Seong-Hyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.1
    • /
    • pp.1-8
    • /
    • 2017
  • Three small scale hollow circular reinforced concrete columns with aspect ratio 4.5 were tested under cyclic lateral load with constant axial load. Diameter of section is 400 mm, hollow diameter is 200 mm. The selected test variable is transverse steel ratio. Volumetric ratios of spirals of all the columns are 0.302~0.604% in the plastic hinge region. It corresponds to 45.9~91.8% of the minimum requirement of confining steel by Korean Bridge Design Specifications, which represent existing columns not designed by the current seismic design specifications or designed by seismic concept. The longitudinal steel ratio is 2.017%. The axial load ratio is 7%. This paper describes mainly crack behavior, load-displacement hysteresis loop, seismic performance such as equivalent damping ratio, residual displacement and effective stiffness and flexural over-strength of circular reinforced concrete bridge columns with respect to test variable. The regulation of flexural over-strength is adopted by Korea Bridge Design Specifications (Limited state design, 2012). The test results are compared with nominal strength, result of nonlinear moment-curvature analysis and the design specifications such as AASHTO LRFD and Korea Bridge Design Specifications(Limited state design).

A study on the field tests and development of quantitative two-dimensional numerical analysis method for evaluation of effects of umbrella arch method (UAM 효과 평가를 위한 현장실험 및 정량적 2차원 수치해석기법 개발에 관한 연구)

  • Kim, Dae-Young;Lee, Hong-Sung;Chun, Byung-Sik;Jung, Jong-Ju
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.11 no.1
    • /
    • pp.57-70
    • /
    • 2009
  • Considerable advance has been made on research on effect of steel pipe Umbrella Arch Method (UAM) and mechanical reinforcement mechanism through numerical analyses and experiments. Due to long analysis time of three-dimensional analysis and its complexity, un-quantitative two-dimensional analysis is dominantly used in the design and application, where equivalent material properties of UAM reinforced area and ground are used, For this reason, development of reasonable, theoretical, quantitative and easy to use design and analysis method is required. In this study, both field UAM tests and laboratory tests were performed in the residual soil to highly weathered rock; field tests to observe the range of reinforcement, and laboratory tests to investigate the change of material properties between prior to and after UAM reinforcement. It has been observed that the increase in material property of neighboring ground is negligible, and that only stiffness of steel pipe and cement column formed inside the steel pipe and the gap between steel pipe and borehole contributes to ground reinforcement. Based on these results and concept of Convergence Confinement Method (CCM), two dimensional axisymmetric analyses have been performed to obtain the longitudinal displacement profile (LDP) corresponding to arching effect of tunnel face, UAM effect and effect of supports. In addition, modified load distribution method in two dimensional plane-strain analysis has been suggested, in which effect of UAM is transformed to internal pressure and modified load distribution ratios are suggested. Comparison between the modified method and conventional method shows that larger displacement occur in the conventional method than that in the modified method although it may be different depending on ground condition, depth and size of tunnel, types of steel pipe and initial stress state. Consequently, it can be concluded that the effect of UAM as a beam in a longitudinal direction is not considered properly in the conventional method.

An Experimental Study on Optimum Slanting Angle in Reticulated Root Piles Installation (그물식 뿌리말뚝의 최적 타설경사각에 관한 실험 연구)

  • 이승현;김병일
    • Geotechnical Engineering
    • /
    • v.11 no.2
    • /
    • pp.29-36
    • /
    • 1995
  • Load testis are executed on model reticulated root piles (RRP) to figure out the optimum slanting angle in the piles installation. One set of model RRP consists of 8 slanting piles which are installed in circular patterns forming two concentric circles, each of which is made by 4 piles. Each pile which is a steel bar of 5m in diameter and 300mm in length is coated to become a pile of 6.5mm in diameter. The slanting angle of the model RRP varies from 0$^{\circ}$ to 20$^{\circ}$ Comparing ultimate bearing capacities of the model RRP of different installation angles, it is observed that the ultimate capacities of the RRP increase as the installation angle increases until 15$^{\circ}$, and the optimum slanting angle of the RRP is around 15$^{\circ}$ The ultimate bearing capacity of the 15$^{\circ}$-RRP is found to be 22% bigger than that of the vertical RRP and 120% bigger than that of the circular surface footing whose diameter is same with the circle formed by outer root piles'heads. However, it is noticed that when the slanting angle of the RRP is increased over 15$^{\circ}$, the ultimate capacity starts to be reduced. The ultimate capacity of 20$^{\circ}$-RRP is even smaller than that of the vertical RRP by as much as 5%. From the observation of the load settlement curve obtained during the RRP load tests, it is known that as the slanting angle gets bigger the load -settlement behavior becomes more ductile.

  • PDF