• Title/Summary/Keyword: 하중측정

Search Result 1,514, Processing Time 0.03 seconds

Shear strain behaviour due to twin tunnelling adjacent to pile group (군말뚝 기초 하부 병렬터널 굴착 시 전단변형 거동 특성)

  • Subin Kim;Young-Seok Oh;Yong-Joo Lee
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.26 no.1
    • /
    • pp.59-78
    • /
    • 2024
  • In tunnel construction, the stability is evaluated by the settlement of adjacent structures and ground, but the shear strain of the ground is the main factor that determines the failure mechanism of the ground due to the tunnel excavation and the change of the operating load, and can be used to review the stability of the tunnel excavation and to calculate the reinforcement area. In this study, a twin tunnel excavation was simulated on a soft ground in an urban area through a laboratory model test to analyze the behavior of the twin tunnel excavation on the adjacent pile grouped foundation and adjacent ground. Both the displacement and the shear strain of ground were obtained using a close-range photogrammetry during laboratory model test. In addition, two-dimensional finite element numerical analysis was performed based on the model test. The results of a back-analysis showed that the maximum shear strain rate tends to decrease as the horizontal distance between the pillars of the twin tunnel and the vertical distance between the toe of the pile group and the crown of the tunnel were decreased. The impact of the second tunnel on the first tunnel and pile group was decreased as the horizontal distance between the pillars of the twin tunnel was increased. In addition, the vertical distance between the toe of the pile group and the crown of the tunnel had a relatively greater impact on the shear strain results than the horizontal distance of the pillars between the twin tunnels. According to the results of the close-range photogrammetry and numerical analysis, the settlement of adjacent pile group and adjacent ground was measured within the design criteria, but the shear strain of the ground was judged to be outside the range of small strain in all cases and required reinforcement.

무령왕릉보존에 있어서의 지질공학적 고찰

  • 서만철;최석원;구민호
    • Proceedings of the KSEEG Conference
    • /
    • 2001.05b
    • /
    • pp.42-63
    • /
    • 2001
  • The detail survey on the Songsanri tomb site including the Muryong royal tomb was carried out during the period from May 1 , 1996 to April 30, 1997. A quantitative analysis was tried to find changes of tomb itself since the excavation. Main subjects of the survey are to find out the cause of infiltration of rain water and groundwater into the tomb and the tomb site, monitoring of the movement of tomb structure and safety, removal method of the algae inside the tomb, and air controlling system to solve high humidity condition and dew inside the tomb. For these purposes, detail survery inside and outside the tombs using a electronic distance meter and small airplane, monitoring of temperature and humidity, geophysical exploration including electrical resistivity, geomagnetic, gravity and georadar methods, drilling, measurement of physical and chemical properties of drill core and measurement of groundwater permeability were conducted. We found that the center of the subsurface tomb and the center of soil mound on ground are different 4.5 meter and 5 meter for the 5th tomb and 7th tomb, respectively. The fact has caused unequal stress on the tomb structure. In the 7th tomb (the Muryong royal tomb), 435 bricks were broken out of 6025 bricks in 1972, but 1072 bricks are broken in 1996. The break rate has been increased about 250% for just 24 years. The break rate increased about 290% in the 6th tomb. The situation in 1996 is the result for just 24 years while the situation in 1972 was the result for about 1450 years. Status of breaking of bircks represents that a severe problem is undergoing. The eastern wall of the Muryong royal tomb is moving toward inside the tomb with the rate of 2.95 mm/myr in rainy season and 1.52 mm/myr in dry season. The frontal wall shows biggest movement in the 7th tomb having a rate of 2.05 mm/myr toward the passage way. The 6th tomb shows biggest movement among the three tombs having the rate of 7.44mm/myr and 3.61mm/myr toward east for the high break rate of bricks in the 6th tomb. Georadar section of the shallow soil layer represents several faults in the top soil layer of the 5th tomb and 7th tomb. Raninwater flew through faults tnto the tomb and nearby ground and high water content in nearby ground resulted in low resistance and high humidity inside tombs. High humidity inside tomb made a good condition for algae living with high temperature and moderate light source. The 6th tomb is most severe situation and the 7th tomb is the second in terms of algae living. Artificial change of the tomb environment since the excavation, infiltration of rain water and groundwater into the tombsite and bad drainage system had resulted in dangerous status for the tomb structure. Main cause for many problems including breaking of bricks, movement of tomb walls and algae living is infiltration of rainwater and groundwater into the tomb site. Therefore, protection of the tomb site from high water content should be carried out at first. Waterproofing method includes a cover system over the tomvsith using geotextile, clay layer and geomembrane and a deep trench which is 2 meter down to the base of the 5th tomb at the north of the tomv site. Decrease and balancing of soil weight above the tomb are also needed for the sfety of tomb structures. For the algae living inside tombs, we recommend to spray K101 which developed in this study on the surface of wall and then, exposure to ultraviolet light sources for 24 hours. Air controlling system should be changed to a constant temperature and humidity system for the 6th tomb and the 7th tomb. It seems to much better to place the system at frontal room and to ciculate cold air inside tombs to solve dew problem. Above mentioned preservation methods are suggested to give least changes to tomb site and to solve the most fundmental problems. Repairing should be planned in order and some special cares are needed for the safety of tombs in reparing work. Finally, a monitoring system measuring tilting of tomb walls, water content, groundwater level, temperature and humidity is required to monitor and to evaluate the repairing work.

  • PDF

Mechanical Characteristics of the Rift, Grain and Hardway Planes in Jurassic Granites, Korea (쥬라기 화강암류에서 발달된 1번 면, 2번 면 및 3번 면의 역학적 특성)

  • Park, Deok-Won
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.33 no.3
    • /
    • pp.273-291
    • /
    • 2020
  • The strength characteristics of the three orthogonal splitting planes, known as rift, grain and hardway planes in granite quarries, were examined. R, G and H specimens were obtained from the block samples of Jurassic granites in Geochang and Hapcheon areas. The directions of the long axes of these three specimens are perpendicular to each of the three planes. First, The chart, showing the scaling characteristics of three graphs related to the uniaxial compressive strengths of R, G and H specimens, were made. The graphs for the three specimens, along with the increase of strength, are arranged in the order of H < G < R. The angles of inclination of the graphs for the three specimens, suggesting the degree of uniformity of the texture within the specimen, were compared. The above angles for H specimens(θH, 24.0°~37.3°) are the lowest among the three specimens. Second, the scaling characteristics related to the three graphs of RG, GH and RH specimens, representing a combination of the mean compressive strengths of the two specimens, were derived. These three graphs, taking the various N-shaped forms, are arranged in the order of GH < RH < RG. Third, the correlation chart between the strength difference(Δσt) and the angle of inclination(θ) was made. The above two parameters show the correlation of the exponential function with an exponent(λ) of -0.003. In both granites, the angle of inclination(θRH) of the RH-graph is the lowest. Fourth, the six types of charts, showing the correlations among the three kinds of compressive strengths for the three specimens and the five parameters for the two sets of microcracks aligned parallel to the compressive load applied to each specimen, were made. From these charts for Geochang and Hapcheon granites, the mean value(0.877) of the correlation coefficients(R2) for total density(Lt), along with the frequency(N, 0.872) and density(ρ, 0.874), is the highest. In addition, the mean values(0.829) of correlation coefficients associated with the mean compressive strengths are more higher than the minimum(0.768) and maximum(0.804) compression strengths of three specimens. Fifth, the distributional characteristics of the Brazilian tensile strengths measured in directions parallel to the above two sets of microcracks in the three specimens from Geochang granite were derived. From the related chart, the three graphs for these tensile strengths corresponding to the R, G and H specimens show an order of H(R1+G1) < G(R2+H1) < R(R1+G1). The order of arrangement of the three graphs for the tensile strengths and that for the compressive strengths are mutually consistent. Therefore, the compressive strengths of the three specimens are proportional to the three types of tensile strengths. Sixth, the values of correlation coefficients, among the three tensile strengths corresponding to each cumulative number(N=1~10) from the above three graphs and the five parameters corresponding to each graph, were derived. The mean values of correlation coefficients for each parameter from the 10 correlation charts increase in the order of density(0.763) < total length(0.817) < frequency(0.839) < mean length(Lm, 0.901) ≤ median length(Lmed, 0.903). Seventh, the correlation charts among the compressive strengths and tensile strengths for the three specimens were made. The above correlation charts were divided into nine types based on the three kinds of compressive strengths and the five groups(A~E) of tensile strengths. From the related charts, as the tensile strength increases with the mean and maximum compressive strengths excluding the minimum compressive strength, the value of correlation coefficient increases rapidly.

Bone Density and Related Factors of Food and Nutrition Major and Non-Major University Students in Seoul Area (서울지역 식품영양전공.비전공대학생의 골밀도에 미치는 영향요인에 관한 연구)

  • 정남용;최순남
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.13 no.5
    • /
    • pp.391-407
    • /
    • 2003
  • This study was conducted to investigate the factors affecting the born density of food and nutrition major and non-major university students in Seoul area. Data for food habits, dietary and health-related behavior were obtained by self administered questionnaires. BQI(bone quality index) of the subjects were measured by Quantitative Ultrasound (QUS). The results are summarized as follows: The average height, weight, BMI and osteopenia percentage of the major and non-major male and female student were l74.49cm, 67.05kg, 21.96 and 22.0%; l74.34cm, 65.98kg, 21.69 and 11.8%; l60.76cm, 54.48kg, 21.07 and 40.0%; l61.30cm, 54.22kg, 20.84 and 40.2%, respectively. The BQI of the major and non-major subjects were 108.07 and 110.47 in male student group, and 89.13, 88.18 in female student group, respectively. The T-score and Z-score of bone density of the subjects were not significantly different. Weight and BMI were positively related with BQI in male and female group but the relationship with BMI tended to be stronger in non-major female group than other groups. BQI was positively affected by exercise time, favorite food, and intake of seafood and tea in major and non-major male student group. One-side eating habit and intake of instant foods were negatively related with BQI in both male groups. In major and non-major female student group, exercise time, meal regularity, favorite food, amount of meal, intake of tofu were related with BQI positively and intake of tea and/or meats negatively. The result of this study revealed that desirable food habits, dietary behavior and health-related lifestyle may have a beneficial effect on bone density. They need practically and systematically organized nutrition education on optimum body weight, good eating habits, weight bearing exercise and intakes of good quality nutrient for higher bone density level.

  • PDF