• Title/Summary/Keyword: 하중저항계수 설계법

Search Result 86, Processing Time 0.026 seconds

Flexural Resistance Statistics of Composite Plate Girders (국내 생산 강재를 적용한 강합성 거더 휨저항강도의 통계적 특성)

  • Shin, Dong Ku;Kim, Chun Yong;Rho, Joon Sik;Park, Young Suk
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.2
    • /
    • pp.139-146
    • /
    • 2007
  • The objective of the present study is to provide statistical resistance statistics for steel-concrete composite plate girder sections under positive and negative moments. Statistical properties on yield strength, tensile strength, elongation, and fracture toughness of domestic structural steel products, gathered from an analysis of over 16,000 samples, were evaluated. Using the steel samples for the plate girder, the bias factor and the coefficient of variation of the ultimate flexural resistance for representative composite plate girder sections under positive and negative flexures were presented. In calculating the ultimate flexural resistance of the composite section, the moment curvature relationships were developed using the incremental load approach considering material nonlinearity for the steel girder. The predicted statistics can be used in the future for the efficient calibration of LRFD code.

A Study on LRFD Reliability Based Design Criteria of RC Flexural Members (R.C. 휨부재(部材)의 L.R.F.D. 신뢰성(信賴性) 설계기준(設計基準)에 관한 연구(研究))

  • Cho, Hyo Nam
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.1 no.1
    • /
    • pp.21-32
    • /
    • 1981
  • Recent trends in design standards development in some European countries and U.S.A. have encouraged the use of probabilistic limit sate design concepts. Reliability based design criteria such as LSD, LRFD, PBLSD, adopted in those advanced countries have the potentials that they afford for symplifying the design process and placing it on a consistent reliability bases for various construction materials. A reliability based design criteria for RC flexural members are proposed in this study. Lind-Hasofer's invariant second-moment reliability theory is used in the derivation of an algorithmic reliability analysis method as well as an iterative determination of load and resistance factors. In addition, Cornell's Mean First-Order Second Moment Method is employed as a practical tool for the approximate reliability analysis and the derivation of design criteria. Uncertainty measures for flexural resistance and load effects are based on the Ellingwood's approach for the evaluation of uncertainties of loads and resistances. The implied relative safety levels of RC flexural members designed by the strength design provisions of the current standard code were evaluated using the second moment reliability analysis method proposed in this study. And then, resistance and load factors corresponding to the target reliability index(${\beta}=4$) which is considered to be appropriate level of reliability considering our practices are calculated by using the proposed methods. These reliability based factors were compared to those specified by our current ultimate strength design provisions. It was found that the reliability levels of flexural members designed by current code are not appropriate, and the code specified resistance and load factors were considerably different from the reliability based resistance and load factors proposed in this study.

  • PDF

Analysis of Design Live Load of Railway Bridge Through Statistical Analysis of WIM Data for High-speed Rail (고속철도 WIM 데이터에 대한 통계분석을 통한 철도교량 설계활하중 분석)

  • Park, Sumin;Yeo, Inho;Paik, Inyeol
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.6
    • /
    • pp.589-597
    • /
    • 2015
  • In this paper, the live load model for the design of high-speed railway bridge is analyzed by statistic and probabilistic methods and the safety level that is given by the load factors of the load combination is analyzed. This study is a part of the development of the limit state design method for the railway bridge, and the train data collected from the Gyeongbu high-speed railway for about one month are utilized. The four different statistical methods are applied to estimate the design load to match the bridge design life and the results are compared. In order to examine the safety level that the design load combination of the railway bridge gives, the reliability indexes are determined and the results are analyzed. The load effect from the current design live load for the high-speed rail bridge which is 0.75 times of the standard train load is came out greater than at least 30-22% that from the estimated load from the measured data. If it is judged based on the ultimate limit state, there is a possibility of additional reduction of the safety factors through the reliability analysis.

Reliability Analysis of Fatigue Truck Model Using Measured Truck Traffic Statistics (통행차량 특성을 반영한 강교량 피로설계트럭의 피로파괴 신뢰도해석)

  • Shin, Dong Ku;Kwon, Tae Hyung;Park, Young Suk
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.2
    • /
    • pp.211-221
    • /
    • 2007
  • A structural reliability analysis of fatigue truck model for fatigue failure of highway steel bridges was performed by applying the Miner's fatigue damage rule expressed as a function of various random variables affecting fatigue damage. Among the variables, the statistical parameters for equivalent moment, impact factor, and loadometer were obtained by analyzing recently measured domestic traffic data, whereas the parameters on fatigue strength, girder distribution factor, and headway factor of the measured data available in the literature were used. The effects of various fatigue truck models, fatigue life, ADTT, fatigue detail category, loadometer, and gross vehicle weight of fatigue truck on the reliability index of fatigue damage were analyzed. It is expected that the analytical results presented herein can be used as a basic background material in the calibration of both fatigue design truck and fatigue load factor of LRFD specification.

Target Reliability Indices of Static Design Methods for Driven Steel Pipe Piles in Korea (국내 항타강관말뚝 설계법의 목표 신뢰도지수)

  • Kwak, Kiseok;Huh, Jungwon;Kim, Kyung Jun;Park, Jae Hyun;Lee, Juhyung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.1C
    • /
    • pp.19-29
    • /
    • 2008
  • As a part of study to develop LRFD (Load and Resistance Factor Design) codes for foundation structures in Korea, reliability analyses for driven steel pipe piles are performed and the target reliability indices are selected carefully. The 58 data sets of static load tests and soil property tests conducted in the whole domestic area were collected and analyzed to determine the representative bearing capacities of the piles. The static bearing capacity formula and the Meyerhof method using N values are applied to calculate the expected design bearing capacity of the piles. The resistance bias factors were evaluated for the two static design methods by comparing the representative bearing capacities with the design values. Reliability analysis was performed by two types of advanced methods: First Order Reliability Method (FORM), and Monte Carlo Simulation (MCS) method using resistance bias factor statistics. The static bearing capacity formula exhibited relatively small variation, whereas the Meyerhof method showed relatively high inherent conservatism in the resistance bias factors. Reliability indices for safety factors in the range of 3 to 5 were evaluated respectively as 1.50~2.89 and 1.61~2.72 for both of the static bearing capacity formula and the Meyerhof method. The target reliability indices are selected as 2.0 and 2.33 for group pile case and 2.5 for single pile case, based on the reliability level of the current design practice and considering redundancy of pile group, acceptable risk level, construction quality control, and significance of individual structure.

Development of Finite Element Analysis Program for the Concrete Pavement (유한 요소법에 의한 콘크리트 포장도로의 구조해석 프로그램개발)

  • 조병완
    • Computational Structural Engineering
    • /
    • v.3 no.2
    • /
    • pp.89-95
    • /
    • 1990
  • As modern industry go further, a rigid concrete pavement has been widely constructed. The load carrying capacity of the flexible asphalt pavements is brought about by a layered system, distributing the load over the subgrade, rather than by the bending action of the slab. On the other hand, the rigid pavement, because of its rigidity and high modulus of elasticity, tends to distribute the traffic load over wide subbases, and its capacity of the strength is supplied by the slab itself. Thus, it is necessary to study the structural behavior of concrete slab under the variations of temperature changes and applied traffic loads. It reguires the development of finite element analysis program for the concrete highway pavement, which provides better understanding of concrete pavement behavior and effective design data to highway engineers.

  • PDF

An Experimental Study on the Block Shear Rupture of Angle Tension Members (인장력을 받는 ㄱ형강의 블록전단 파단에 관한 실험적 연구)

  • Kim, Bo Young;Lee, Kyu Kwong;Choi, Mun Sik
    • Journal of Korean Society of Steel Construction
    • /
    • v.10 no.4 s.37
    • /
    • pp.721-730
    • /
    • 1998
  • In this paper, an experimental study have been many studies on the joints of steel structure, for it has great influences on the safety of structures. Research on block shear rupture of the joint receiving pure tension have been done in foreign countries, but not in Korea. This study focuses on the propriety of block shear design code, according to limited state design criteria of steel structures recently established in Korea, by an experiment on the joint of angle tension members. The methods of this study were to compare other study results on block shear rupture mode and ultimate capacity, and to evaluate the propriety of the criteria design code. The result is that tension yield shear ruptures and shear yield tension ruptures happened at the joint, and the experimental rupture load was 15% higher than the capacity entered in the criteria design code. We conclude that it is necessary to revaluate the block shear design code presented by many studies on the limited state design criteria of steel structures.

  • PDF

Ultimate Behavior of Plate Girders with High Strength Steel in Combined Bending and Shear (휨과 전단을 받는 고강도강 플레이트거더의 극한거동)

  • Kim, Jong-Min;Hwang, Min-Oh;Kang, Young-Jong
    • 한국방재학회:학술대회논문집
    • /
    • 2010.02a
    • /
    • pp.84.1-84.1
    • /
    • 2010
  • 국내에서는 플레이트거더의 휨 강도 및 전단 강도를 허용응력설계법에 기반한 도로교설계기준(2005)에 근거하여 규정하고 있으며, 국외의 경우 하중저항계수설계법에 근간을 둔 AISC(2005) 등의 규정을 통해 산정하고 있다. 최근에는 인장강도 800MPa 급의 강재가 생산되고 있으나 국내 설계기준에서는 아직까지 상기 인장강도를 갖는 고강도강에 대한 설계기준은 마련되지 않고 있다. 본 연구에서는 휨과 전단이 동시에 작용하는 고강도강 적용 플레이트거더의 극한거동 해석을 통해 국내기준의 적용성을 판단하고, 국외기준인 AISC(2005)와 비교하여 나타내어 허용응력설계법에 근거한 국내기준의 강도산정법의 한계점에 대해 고찰하였다.

  • PDF

Flexural Reliability Assessment of PSC-I Girder Rail Bridge Under Operation (사용중 PSC-I 거더 철도 교량의 휨모멘트에 대한 신뢰도 분석)

  • Kim, Ki Hyun;Yeo, Inho;Sim, Hyoung-Bo
    • Journal of the Korean Society for Railway
    • /
    • v.19 no.2
    • /
    • pp.187-194
    • /
    • 2016
  • It is necessary to determine reliability indexes of existing railway bridges prior to setting up a proper target reliability index that can be used to introduce a reliability based limit state design method to design practice. Reliability is evaluated for a six PSC-I girder railway bridge, which is one of many representative types of double-track railway bridges. The reliability assessment is carried out for an edge girder subjected to bending moment. In the assessment, the flexural resistance and the fixed-load effect were obtained using existing statistical values from previous research on the introduction of limit state design to road bridge design. On the other hand, the live-load effect was determined using statistical values obtained from field measurement for the Joong-ang corridor, on which heavy freight trains are frequently passing. The reliability assessment is performed by AFOSM(Advanced First Order Second Moment method) for the limit state equation, and a sensitivity analysis for the reliability is performed for each factor of the load and resistance effects.

Probability-Based USD Code for Reinforced Concrete (확률이론(確率理論)에 기초(基礎)한 철근(鐵筋)콘크리트 강도설계규준(强度設計規準))

  • Cho, Hyo Nam;Chang, Dong Il;Shin, Jae Chul
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.6 no.4
    • /
    • pp.53-60
    • /
    • 1986
  • This study is directed to propose a probability based LRFD design code, which could possibly replace the traditional USD provisions of the current code, based on the AFOSM reliability theory. The uncertainties of resistances and load effects for each R.C. structural elements are evaluated and adopted considering our practice, and a set of rational target reliability indices are selected based on the calibration with the reliability of the current R.C. design code and by considering the desired hierarchy of safety level. Then, a set of common load factors are chosen from the results of load and resistance factors which are computed by AFOSM method using the Rackwitz-Fiessler's efficient practical algorithm which is to transform the non-normal variables into the equivalent normal variables. It may be asserted that the proposed LRFD code for the R.C. building structures may have to be incorporated into the current RC. design codes as a design provision corresponding to the USD provisions of the current R.C. design code.

  • PDF