• Title/Summary/Keyword: 하중밀도

Search Result 174, Processing Time 0.029 seconds

Structural Analysis and Design of Artificial Hip Joint by Using Finite Element Method (유한요소법을 이용한 인공 고관절의 역학적 거동 해석 및 설계)

  • 정재연;황운봉;하성규
    • Composites Research
    • /
    • v.12 no.5
    • /
    • pp.98-109
    • /
    • 1999
  • An investigation has been performed to develop a nonlinear finire element method for the analysis of the long-term behavior of an artificial hip joint. The three dimensional multi-layered brick element is used to analyze the design performances of hip prodtheses with various materials and the thick laminated composite hip prostheses with various layup sequences. The used element can accommodate the varying material properties of the element and allow the ply-drop-off along the eleement edge. The nonlinear finite element analysis program has been verified by the comparison with the exact solution of the bean problem subjected to uniaxial loading. By using the program, the density changes and strength ratios of artificial hip joint are calculated according to the hip prosthesis materials and the layers of composite hip prosthesis. The numerical results are easily applied to evaluate design performances of a hip prosthesis, and decrease the difficulty and time of hip prosthesis design.

  • PDF

Mechanism and Control of Reaction Force Compensation of XY Linear Motion Stage System (XY 선형 모션 스테이지 시스템의 반발력 보상 기구와 제어)

  • Cho, Kyu-Jung;Choi, Dong-Soo;Ahn, Hyeong-Joon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.6
    • /
    • pp.599-607
    • /
    • 2011
  • In this paper, a reaction-force compensation system for an XY linear motion stage, without an additional external isolation structure or extra motors, is developed. This system consists of a movable magnet track, a spring, a dummy weight, and a dedicated sensor module that measures the relative positions of the movable magnet track with respect to the motor coil. The reaction force compensation system is modeled, and simulations are carried out to optimize design parameters such as the moving distance of the magnet track, the transmission force, the dummy weight, and the allowed size of the mechanism. An XY linear motion stage is built, incorporating the reaction force compensation system, and the performance of the system is verified experimentally. For acceleration and deceleration values of 10 m/$s^2$, 85% of the reaction force is absorbed by the reaction force compensation system.

Characteristics of Lightweight and Thermal Insulation of Bituminous Coal Bottom Ash (유연탄 bottom ash의 경량 및 단열 특성)

  • Lee, Jong Gyu;Yeo, Woon Ho
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.26 no.1
    • /
    • pp.39-45
    • /
    • 2018
  • Research on FA(Fly ash) is actively carried out, while the research on BA(Bottom ash) is not so, and research on BA recycling field is urgently required. Therefore, in this study, we investigated the lightweight and thermal insulation characteristics of BA mortar by comparing BA mortar made with porous dry BA(air-cooled) and general mortar. To investigate the lightweight of BA, density test, unit volume mass test and SEM(Scanning Electron Microscope) test were performed. BA mortar and general mortar molds were prepared for the thermal insulation test at room temperature and humidity environment determined by KS A 0006 and they were dried at the temperature of $105{\pm}2^{\circ}C$ until the weight became constant. As a result of the lightweight test, the lightweight of BA mortar is about 30% lighter than the general mortar. Therefore, BA is expected to contribute to reduce the building load when used as building material. As a result of thermal insulation test, the thermal conductivity of BA mortar is about 30% better than that of general mortar.

Strength of Stainless Steel Pin-reinforced Composite Single-lap Joints (금속 핀으로 보강된 복합재 단일겹침 체결부의 강도 연구)

  • Lee, Byeong-Hee;Park, Yong-Bin;Kweon, Jin-Hwe;Choi, Jin-Ho;Choi, Ik-Hyeon;Chang, Sung-Tae
    • Composites Research
    • /
    • v.25 no.3
    • /
    • pp.65-69
    • /
    • 2012
  • The main objective of this study is to investigate the effect of metal z-pinning on the failure behavior of cocured composite single-lap joints. Three different pin diameters (0.3, 0.5, and 0.7 mm) and three pin areal densities (0.5, 2.0, and 4.0%) were examined. The specimens were fabricated by T700-12K-31E#2510 unidirectional prepreg from Toray. Stainless steel pins were used for z-pinning. Test results showed that except one case with extremely low pin density of 0.5%, all other z-pinned joints exhibited lower initial crack stresses than those of the unpinned joint. However the ultimate strength of the z-pinned joint increased up to 45% at most. Furthermore, even after the complete failure of the joint, the z-pins sustained the carried load to a certain degree experiencing large deformation and provided the stable fracture behavior for the composite joint.

p-Version Elasto-Plastic Finite Element Analysis by Incremental Theory of Plasticity (증분소성이론에 의한 p-Version 탄소성 유한요소해석)

  • 정우성;홍종현;우광성
    • Computational Structural Engineering
    • /
    • v.10 no.4
    • /
    • pp.217-228
    • /
    • 1997
  • The high precision analysis by the p-version of the finite element method are fairly well established as highly efficient method for linear elastic problems, especially in the presence of stress singularity. It has been noted that the merits of the p-version are accuracy, modeling simplicity, robustness, and savings in user's and CPU time. However, little has been done to exploit their benefits in elasto-plastic analysis. In this paper, the p-version finite element model is proposed for the materially nonlinear analysis that is based on the incremental theory of plasticity using the constitutive equation for work-hardening materials, and the associated flow rule. To obtain the solution of nonlinear equation, the Newton-Raphson method and initial stiffness method, etc are used. Several numerical examples are tested with the help of the square plates with cutout, the thick-walled cylinder under internal pressure, and the circular plate with uniformly distributed load. Those results are compared with the theoretical solutions and the numerical solutions of ADINA

  • PDF

Compressive Characteristics of New Wire-woven Cellular Metal (새로운 와이어 직조 다공질 금속의 압축 특성)

  • Ko, Gyeong-Deuk;Lee, Ki-Won;Kang, Ki-Ju
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.11
    • /
    • pp.1659-1666
    • /
    • 2010
  • In this study, a new type of wire-woven cellular metal named WBD(wire-woven bulk diamond) was developed. Like WBK(wire-woven bulk Kagome), WBD is composed of helically formed wires; WBK was introduced a few years ago, and its mechanical, thermal properties, and engineering applications have been extensively investigated. The number of wires that pass by one another at each cross point in WBD is four, whereas that in WBK is three. The mechanical behavior of WBD subjected to compression was investigated and the results were compared to those for WBK. For a given slenderness ratio the density and yield strength of WBD were about twice as high as those for WBK, but elastic stiffness of WBD was not that higher than that for WBK.

Fatigue Life Analysis and Prediction of 316L Stainless Steel Under Low Cycle Fatigue Loading (저사이클 피로하중을 받는 316L 스테인리스강의 피로수명 분석 및 예측)

  • Oh, Hyeong;Myung, NohJun;Choi, Nak-Sam
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.12
    • /
    • pp.1027-1035
    • /
    • 2016
  • In this study, a strain-controlled fatigue test of widely-used 316L stainless steel with excellent corrosion resistance and mechanical properties was conducted, in order to assess its fatigue life. Low cycle fatigue behaviors were analyzed at room temperature, as a function of the strain amplitude and strain ratio. The material was hardened during the initial few cycles, and then was softened during the long post period, until failure occurred. The fatigue life decreased with increasing strain amplitude. Masing behavior in the hysteresis loop was shown under the low strain amplitude, whereas the high strain amplitude caused non-Masing behavior and reduced the mean stress. Low cycle fatigue life prediction based on the cyclic plastic energy dissipation theory, considering Masing and non-Masing effects, showed a good correlation with the experimental results.

Compressive Strength and Tensile Behavior of Ultra-High Performance Concrete and High-Ductile Cementless Composite (초고성능 콘크리트와 고연성 무시멘트 복합재료의 압축 및 인장성능)

  • Choi, Jeong-Il;Park, Se Eon;Lee, Bang Yeon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.3
    • /
    • pp.69-75
    • /
    • 2017
  • Ultra-high performance concrete and high ductile cementless composite are considered as promising construction materials because those exhibits higher performance in terms of high strength and high ductility. The purpose of this study is to investigate experimentally the compressive strength and tensile behavior of ultra-high performance concrete and high ductile cementless composite. A series of experiments including density, compressive strength, and uniaxial tension tests were performed. Test results showed that the compressive strength and tensile strength of alkali-activated slag based high ductile cementless composite were lower than those of ultra-high performance concrete. However, the tensile strain capacity and toughness of alkali-activated slag based high ductile cementless composite were higher than those of ultra-high performance concrete. And it was exhibited that a high ductility up to 7.89% can be attainable by incorporating polyethylene fiber into the alkali-activated slag based cementless paste.

Analysis of river flow characteristics for vegetation in real-scale experiment center (실규모 실험장에서의 식생에 따른 하천 흐름특성분석)

  • Kim, Jong Min;Kim, Hyung Suk;Lee, Chan Joo;Kim, Sung Joong;Kim, Dong gu
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.271-271
    • /
    • 2019
  • 하천에서의 식생은 하천의 조도 및 흐름특성을 변화시키는 요인 중 하나로서 하천 내의 식생밀도 변화로 인하여 발생한 하상변동은 장기적으로 하천내의 하중도가 발생하거나, 식생으로 인해한 방향으로 편중된 흐름으로 인하여 제내지 방향으로의 하천 침식이 발생하고, 이에 따라 구조물의 안정성에 영향을 미치는 등 하천의 중 장기 계획 시 고려해야할 중요한 요인이다. 이에 따라 식생 모형을 이용한 다양한 흐름특성 분석 실험들이 수행되었으나, 대부분의 연구에서는 식생을 단순화하여 모형으로 사용하였기 때문에 실제 식생에 대한 영향성을 보기에는 한계가 존재한다. 건설기술연구원의 하천실증연구센터에서는 이러한 식생의 영향을 분석하기 위하여 네덜란드의 Deltares, 핀란드의 Aalto 대학 등과 함께 다년간 국제공동연구를 수행하였으며, 금번 소개하는 실험에서는 식생밀도에 따른 흐름변화, 하상변동 및 환경 변화 등의 검토를 목적으로 하였다. 실험은 총 2가지 유량 조건에 대하여 수행되었으며, 실험 중 흐름의 안정화를 확인하기 위하여, 유출수조에는 6개의 압력식 수위계를 설치하여 실험기간동안 유출수조에서의 수심변화를 측정하였고, 하도에는 실험구간 상 하류에 SonTek의 SL-1500 및 SL-3000을 이용하여 지속적으로 수심을 측정하고, 이 외에도 하류단에 2개의 압력식 수위 측정장비를 설치하여 수심을 모니터링하였다. 실험에 사용된 식생은 높이 약 1.5m의 2가지 밀도로 폭 2m, 길이 4m의 규모로 설치하였고, 광파기와 3차원 레이저 스캐너를 이용하여 실험 전 후의 식생 주변 및 전 실험구간의 하상을 측량하였다. 흐름특성 분석을 위한 수리 측정은 Nortek사의 Vectrino를 이용하여 측정하였고, 총 24개 측선에 대하여 각 측선별 5 ~ 10개의 유속자료를 측정하였으며, 각 측점별로 90초간 자료를 수집하였다. 흐름특성 분석에 사용된 유속자료는 이상치를 제거한 후 수행되었으며, 이상치의 제거는 표준편차의 3배 이상의 편차를 갖거나, 측정자료의 자기상관도가 70% 이하인 값들은 제거한 후 분석을 수행하였다. 흐름 분석을 위한 측정자료를 이 외에도 캠코더를 이용한 표면유속영상 측정기법과 ADCP를 이용한 측정도 병행하였으나, 본 연구에서는 Vectrino로 측정된 결과만을 소개하고자 한다.

  • PDF

An Experimental Study on Quality Properties of Living Concrete Using Loess-Magnesia Composites (황토-마그네시아 복합체 활용 Living Concrete의 품질특성에 관한 실험적 연구)

  • Yun-Wang, Choi;Young-Woo, Na;Yong-Woo, Kwon
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.4
    • /
    • pp.498-505
    • /
    • 2022
  • In this study, as a result of eva lua ting the quality properties of Living Concrete, the flow of the table showed a tendency to decrease as the mixing ratio of ocher increased. Compressive strength was found to decrease with increasing loess mixing ratio. Density properties were evaluated for weight reduction, As a result of comparison with the panel using cement as a comparison group, the density was measured to be a bout 20 % lower than that of the cement panel, and it is judged that it is less affected by the load and can be installed in the structure. As a result of evaluating the panel temperature reduction, there was a difference in the temperature reduction with time. It is judged that the panel planted with moss has a lower temperature than the panel without moss, so it is judged that it can be used in a vertical greening system.