• Title/Summary/Keyword: 하중모형

Search Result 889, Processing Time 0.029 seconds

Dynamic Behavior Evaluation of Pile-Supported Slab Track System by Centrifuge Model Test (원심모형 실험을 통한 궤도지지말뚝구조의 동적 거동 평가)

  • Yoo, Mintaek;Lee, Myungjae;Baek, Mincheol;Choo, Yun-Wook;Lee, Il-Wha
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.2
    • /
    • pp.5-17
    • /
    • 2019
  • Dynamic centrifuge model test was conducted to evaluate the dynamic stability of the pile-supported slab track method during dynamic railway loading and earthquake loading. The centrifuge tests were carried out for various condition of embankment height and soft ground depth. Based on test results, we found that the bending moment was increased with embankment height and decreased with soft ground depth. In addition, it was confirmed that the pile-supported slab track system could have dynamic stability for short-period seismic loading. However, in case of long-period seismic loading, such as Hachinohe earthquake, the observed maximum bending moment reached to pile cracking moment at the return period of 2,400 year earthquake. The criterion of ratio between embankment height and soft ground depth was suggested for dynamic stability of pile-supported slab track system.

Characteristics of Bearing Capacity for SCP Composite Ground reinforced by the Sheet piles Restraining Deformation (변위억제형 Sheet pile 설치에 따른 SCP복합지반의 지지력 특성)

  • Park, Byung-Soo
    • Journal of Navigation and Port Research
    • /
    • v.30 no.8 s.114
    • /
    • pp.711-719
    • /
    • 2006
  • A series of geotechnical centrifuge model tests and numerical modelling have been performed to study engineering characteristics of the composite ground reinforced by both the Sand Compaction Piles(SCPs) and the deformation-reducing sheet piles. The research has covered several key issues such as the load-settlement relation, the stress concentration ratio and the final water content of the ground Totally three centrifuge tests have been conducted by changing configuration of the sheet piles, i.e., a test without the sheet pile, a test with the sheet pile at a single side and a test with the sheet piles at the both sides. In the model tests, a vertical load was applied in-flight on the ground surface. On the other hand, class-C type numerical modelling has been performed by using the SAGE-CRISP to compare the centrifuge test results using an elasto-plastic model for SCPs and the Modified Cam Clay model for the soft clay. It has been found that the sheet piles can restraint failure of foundation, thereby increasing yield stress of the ground. The stress concentration ratio was in the range of $2{\sim}4$. In addition, numerical analysis results showed reductions both in the ground heave($20{\sim}30%$) and in the horizontal movement($28{\sim}43%$), demonstrating the deformation-reducing effect of the sheet piles.

A Study on Damage Assessment Technique of Railway Bridge Substructure through Dynamic Response Analysis (동적 응답 분석을 통한 철도교량 하부구조의 피해평가기법연구)

  • Lee, Myungjae;Lee, Il-Wha;Yoo, Mintaek
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.11
    • /
    • pp.61-69
    • /
    • 2021
  • In this study, scale down model bridge piers were fabricated and non-destructive experiments conducted with an impact load to determine scours in the ground adjacent to the bridge piers using the natural frequency of the bridge piers. Three scale-model bridge piers with different heights were fabricated, and they penetrated the ground at a depth of 0.35 m. The scours around the bridge piers were simulated as a side scour and foundation scour. The experiments were conducted in 13 steps, in which scouring around the model bridge piers was performed in 0.05 m excavation units. To derive the natural frequency, the impact load was measured with three accelerometers attached to the model bridge piers. The impact load was applied with an impact hammer, and the top of the model bridge pier was struck perpendicularly to the bridge axis. The natural frequency according to the scour progress was calculated with a fast Fourier transform. The results demonstrated that the natural frequency of each bridge pier tended to decrease with scour progress. The natural frequency also decreased with increasing pier height. With scour progress, a side scour occurred at 70% or higher of the initial natural frequency, and a foundation scour occurred at less than 70%.

Study of Small Craft Resistance under Different Loading Conditions using Model Test and Numerical Simulations (모형시험과 수치해석을 이용한 하중조건 변화에 따른 소형선박의 저항성능 변화에 관한 연구)

  • Jun-Taek, Lim;Michael;Nam-Kyun, Im;Kwang-Cheol, Seo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.6
    • /
    • pp.672-680
    • /
    • 2023
  • Weight is a critical factor in the ship design process given that it has a substantial impact on the hydrodynamic performance of ships. Typically, ships are optimally designed for specific conditions with a fixed draft and displacement. However, in reality, weight and draft can vary within a certain range owing to operational activities, such as fuel consumption, ballast adjustments, and loading conditions . Therefore, we investigated how resistance changes under three different loading conditions, namely overload, design-load, and lightship, for small craft, using both model experiments and numerical simulations. Additionally, we examined the sensitivity of weight changes to resistance to enhance the performance of ships, ultimately reducing power requirements in support of the International Maritime Organization's (IMO) goal of reducing CO2 emissions by 50% by 2050. We found that weight changes have a more significant impact at low Froude Numbers. Operating under overload conditions, which correspond to a 5% increase in draft and an 11.1% increase in displacement, can lead to a relatively substantial increase in total resistance, up to 15.97% and 14.31% in towing tests and CFD simulations, respectively.

숏크리트 거동에 대한 갱도모형실험과 수치해석의 비교

  • Yu, Gwang-Ho;Lee, Min-Ho;Park, Yeon-Jun
    • Proceedings of the Korean Society for Rock Mechanics Conference
    • /
    • 2007.03a
    • /
    • pp.112-121
    • /
    • 2007
  • 지보재의 파괴가 고려된 터널의 안전율을 산정하기 위해 허용응력 설계법에 기초하여 숏크리트 내에 발생하는 응력이 허용응력을 초과하면 숏크리트가 파괴된다고 가정하고, 전단강도 감소기법을 이용하여 수치해석적(2차원)으로 구하는 방법이 유광호 등(2005)에 의해 제시되었다. 하지만 허용응력 설계법에 근거한 방법은 숏크리트의 허용 휨응력을 과소평가하여 터널의 안정성 및 안전율을 과소평가하는 경향이 있다. 따라서 본 논문에서는 숏크리트의 파괴거동을 갱도모형실험을 통해 확인하고 3차원 수치해석에 의해 검증하였다. 갱도모형실험에 사용된 터널은 실제 터널의 거동을 모사하기 위해 폭 3.3m, 높이 2.9m, 깊이 0.5m의 마제형으로 제작되었다. 지보재인 숏크리트는 거푸집을 이용하여 타설하고 28일간 양생하였고 7개의 실린더와 30cm의 모래 뒷채움을 이용하여 지보재에 최대한 등방하중이 가해질 수 있도록 하여 실험을 수행하였다.

  • PDF

The Korea Academia-Industrial cooperation Society (축방향 압축을 받는 폐단면리브로 보강된 복합적층판의 전체좌굴강도 근사해 유도 및 해석적 검증 방안)

  • Choi, Byung-Ho;Park, Sang-Kyun
    • Proceedings of the KAIS Fall Conference
    • /
    • 2012.05b
    • /
    • pp.600-602
    • /
    • 2012
  • 폐단면리브 적용 판의 면내 압축좌굴 거동 특성 중에서 보강재 강성이 작고 비교적 낮은 임계하중을 받는 경우 전체기둥좌굴 거동이 예상된다. 본 논문은 폐단면리브 단면 강성의 고려 방안에 따라 단순 보 유사모형을 정립하고 전체좌굴에 대해 에너지 근사해법을 적용하여 전체좌굴강도 근사해를 유도하기 위한 기초적인 연구방안으로써 검토한 내용을 소개하고자 한다. 유사모형의 폐단면리브 중심에서 휨강성이 발휘되는 것으로 가정하여 모형화 하였다. 폐단면리브 보강판의 프로토타입 모델에 대해 직교이방성 $[(0^{\circ})_4]_s$와 Cross-ply $[(0^{\circ}/90^{\circ})_2]_s$ 적층단면을 각각 고려한 유한요소 해석을 실시하였다. U리브 단면강성에 따른 복합적층 보강판의 탄성좌굴강도 해석결과를 근사해 공식과 비교하고 U리브로 보강된 복합적층판의 좌굴모드 변화양상을 수치해석적으로 검토하였다.

  • PDF

울진 3,4호기 캐비티 모형에서 고압분출사고시 용융물 방출에 관한 연구

  • 홍성완;김희동;진영호
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.11a
    • /
    • pp.421-426
    • /
    • 1996
  • 본 논문에서는 고압분출 사고시 격납용기 하중 완화를 위해 국내 원전에서 채택하고 있는 캐비티내 나포체적이 용융물 방출 분율에 미치는 효과를 분석하기 위한 방법을 제시하고, 이를 울진 3,4호기 캐비티 모형에 적용하였다. 이를 위해 용융물 방출을 예측을 위해 이미 개발된 Kim's 상관식에 고온 상사물을 모의하기 위한 방정식을 도출하여 고온 실험에 적용하였다. 또한, SNL에서 실험자료를 정리하면서 얻은 결과와 나포체적을 가진 캐비티를 대상으로 국내에서 수행된 실험결과를 이용하여 나포체적 해석을 위한 방안을 제시하였다. Kim's 상관식에 고온 상사물 모델을 위한 방정식과 나포체적 해석 방안을 적용. 개선하여 울진 3,4호기와 이와 유사한 캐비티모형에서 용융물 방출 분율을 예측하였다.

  • PDF

Prediction of Lateral Deflection and Maximum Bending Moment of Model Piles Using Artificial Neural Network (인공 신경망을 이용한 모형말뚝의 수평변위와 최대 휨모멘트 예측)

  • 김병탁;김영수;이우진
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.5
    • /
    • pp.169-178
    • /
    • 2000
  • 본 논문에서는 단일 및 군말뚝의 수평변위와 최대 휨모멘트를 예측하기 위하여 인공신경망을 도입하였다. 인공신경망에 의한 결과는 낙동강 모래지반에서 단일 및 군말뚝에 대하여 수행한 일련의 모형실험결과와 비교하였다. 인공신경망 중의 하나인 오류 역전파 신경망(EBIPNN)의 적용성 검증을 위하여 600개의 모형실험결과들을 이용하였다. 그리고 신경망의 구조는 한개의 입력층과 두개의 은닉층 그리고 한개의 출력층으로 구성되었다. 전체 데이터의 25%, 50% 그리고 75% 결과는 각각 신경망의 학습에 이용되었으며 학슴에 이용하지 않은 데이터들은 예측에 이용되었다. 인공신경망 학습결과와 실험결과의 비교에 의하면, 신경망의 최적학습을 위하여 최적학습을 위하여 적합한 은닉층의 뉴런수는 각각 30개로 그리고 학습률은 0.9로 결정되었다. 전체 데이터의 50%이상으로 학습을 수행한 신경망의 모델은 정확한 예측을 하는 것으로 나타났다. 따라서, 인공신경망 모델리 수평하중을 받는 말뚝의 수평변위와 최대 휨모멘트의 예측에 적용될 수 있는 가능성을 보여주었다.

  • PDF

A Study on the Effect of Ice Impact Forces on an Ice-Strengthened Polar Class Ship After a Collision with an Iceberg (빙산과의 충돌 시 충격 하중이 극지운항선박의 내빙 구조에 미치는 영향에 관한 연구)

  • Kim, Sunghyug;Luo, Yu;Shi, Chu;Lee, Chang-Hyun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.1
    • /
    • pp.40-46
    • /
    • 2017
  • Shipping activities have become possible in the Arctic Ocean due to melting ice by global warming. An increasing number of vessels are passing through the Arctic Ocean consequently bringing concerns of ship-iceberg collisions. Thus, most classification societies have implemented regulations to determine requirements for ice strengthening in ship structures. This paper presents the simulation results of an ice-strengthened polar class ship after an iceberg collision. The ice-strengthened polar class ship was created in accordance with the Unified Requirements for a Polar-Ship (IACS URI). An elastic-perfect plastic ice model was adopted for this simulation with a spherical shape. A Tsai-Wu yield surface was also used for the ice model. Collision simulations were conducted under the commercial code LS-DYNA 971. Hull deformations on the ice-strengthened foreship structure and collision interaction forces have been analysed in this paper. A normal-strength ship structure in an iceberg collision was also simulated to present comparison results. Distinct differences in structural strength against ice impact forces were shown between the ice-strengthened and normal-strength ship structures in the simulation results. About 1.8 m depth of hull deformation was found on the normal ship, whereas 1.0 m depth of hull deformation was left on the ice-strengthened polar class ship.

Detailed Investigation on the Dynamic Excess Pore Water Pressure through Liquefaction Tests using Various Dynamic Loadings (다양한 진동하중의 액상화 시험을 통한 동적 과잉간극수압에 대한 상세분석)

  • Choi, Jae-Soon;Jang, Seo-Yong;Kim, Soo-Il
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.11 no.2 s.54
    • /
    • pp.81-94
    • /
    • 2007
  • In most experimental researches on the liquefaction phenomenon, an earthquake as a random vibration has been regraded as a sinusoidal wave or a triangular wave with an equivalent amplitude. Together with the development in the part of signal control and data acquisition, dynamic experimental equipments in the soil dynamics have also developed rapidly and further more, several real earthquakes have been simulated in the large model test such as shaking table tests and centrifuge tests. In Korea, several elementary laboratory tests to simulate the real earthquake load were performed. From these test results, it was reported that the sinusoidal wave cannot reliably reflect the soil dynamic behavior under the real earthquake motion. In this study, 4 types of dynamic motions such as the sinusoidal wave, the triangular wave, the incremental triangular wave and several real earthquake motions which were classified with shock-type and vibration-type were loaded to find something new to explain the change of the excess pore water pressure under the real earthquake load. Through the detailed investigation and comparison on all test results, it is found that the dynamic flow is generated by the soil plastic deformation and the velocity head of dynamic flow is changed the pressure head in the un-drained condition. It can be concluded that the change of the excess pore water pressure is related to the pressure head of dynamic flow. Lastly, a new hypothesis to explain such a liquefaction initiation phenomenon under the real earthquake load is also proposed and verified.