• Title/Summary/Keyword: 하중(load)

Search Result 6,836, Processing Time 0.032 seconds

A Study on failure mechanism and load-bearing capacity of single-shell tunnel lining (싱글쉘 터널 라이닝의 파괴 메카니즘 및 지보성능에 관한 연구)

  • Shin, Hyu-Soung;Kim, Dong-Gyou;Chang, Soo-Ho;Bae, Gyu-jin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.8 no.3
    • /
    • pp.273-287
    • /
    • 2006
  • This study investigates the failure mechanism and load-carrying capacity of a single-shell lining which has no disturbance in transfer of shear force, with respect to a conventional double-shell lining which has separation between layers of shotcrete lining and secondary concrete lining by water-proof membrane. In order to evaluate the capacity, a 2-D numerical investigation is preliminarily carried out and then real-scale loading tests with tunnel lining section specimens are performed on the condition given by the numerical investigation. In the test, a concentrated load is applied for considering a released ground load or rock wedge load. Through this study, it appears that the single-shell lining takes the load-bearing capacity 20% higher than in case of the double-shell lining. In addition, a possibility of a composite single-shell shotcrete layer composed by multiple bonded layers partly involving different contents of high-capacity additives is shown thereby leading to use of less amount of the high-capacity additives on the condition of taking a similar load-bearing capacity.

Effect of Load Velocity on Seismic Performance of Steel Beam-column Connection (하중속도가 강구조 보-기둥 접합부 내진성능에 미치는 영향)

  • Lee, Ki-Won;Oh, Sang-Hoon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.6
    • /
    • pp.182-192
    • /
    • 2022
  • Brittle feature is one of the fracture behaviors of structure s and has a great influence on the seismic performance of structure materials. The load velocity acts as one of the main causes of brittle fracture, and in particular, in situations such as earthquakes, a high load velocity acts on buildings. However, most of the seismic performance evaluation of the domestic and external steel connections is conducted through static experiments. Therefore, there is a possibility that brittle fracture due to factors such as degradation of material toughness and reduction of maximum deformation rate due to high load velocity during an earthquake was not sufficiently considered in the existing seismic performance evaluation. This study conducts a static test at a low load velocity according to the existing experimental method and a dynamic test at a high load velocity using a shaking table, respectively. It compares and analyzes the fracture shape and structural performance according to the results of each experiment, and finally analyzes the effect of the load velocity size on the seismic performance of the connection.

The Necessity of Structural Performance Informations of Sandwich Panels for The Stability of Industry Building using Sandwich Panel as Roof Assemblies. (지붕하중 증가에 따른 공장건물 안정성확보를 위한 지붕외장재의 구조성능정보의 필요성)

  • Kang, Kyung-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.11
    • /
    • pp.725-730
    • /
    • 2017
  • The strength ratio of the main structures of buildings gradually increasing, due to the advances made in analysis and cost saving techniques. In this study, to examine the stability of industry buildings using sandwich panels as roof assemblies, we examine the changes in the moment strength ratio of the main structures caused by increasing the roof load. This study adopts the PEB structure and three H-steel structure as the structural analysis models. In the case where the additional load exceeds about 11% of the roof design load, the strength ratio exceeds 1 for the main structure. In the case where the additional load exceeds about 36%(of the roof design load), the working moment exceeds the plastic moments, which leads to major damage to the structure. This study compares 1) the maximum load according to the purlin spaces, 2) the maximum load by KS, and 3) the maximum load calculated from the test results of the manufacturer.The maximum bearing load of the panels determined by all three methods exceeds the structure failure threshold load of the main structure. This study provides evidence that an unexpected increase in the roof load might cause the whole structure to collapse, due to the failure of the main structural members, before the failure of the roof assemblies. Therefore, information on the structural performance of the sandwich panels is required for the structural design, and the sandwich panels should be considered to be an integral part of the overall structural design.

The Response of Buried Flexible pipe due to Surcharge Load and Uplifting Force. (상재하중 및 인발하중으로 인한 식중매설연성관의 거동 특성)

  • 권호진;정인준
    • Geotechnical Engineering
    • /
    • v.3 no.3
    • /
    • pp.31-48
    • /
    • 1987
  • The vertical pressure due to soil prism load and surface surcharge load acts on buried pipe, and occasionally uplifting force due to earthquake or differential settlement acts on it. In this paper, study was performed to estimate the pressure acting on the buried pipe due to soil prism load through analyzing Marston-Spangler theory by new method. And loading tests on the buried flexible pipe were performed to study on the response of the pipe due to surface surcharge load. Also, through the estimation of uplifting resistance theory and uplifting test for buried pipe, the method to determine the maximum uplifting resistance of buried pipe was proposed.

  • PDF

Ultimate Strength Behavior Analysis on the Ship's Plate under Combined Load(Lateral Pressure Load and Axial Compressive Load) (조합하중을 받는 선체판부재의 최종강도거동 해석)

  • Park Jo-Shin;Ko Jae-Yong;Lee Jun-Kyo;Bae Dong-Kyun
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2005.05a
    • /
    • pp.147-154
    • /
    • 2005
  • The ship plating is generally subjected to combined in-plane load and lateral pressure loads. In-plane loads include axial load and edge shear, which are mainly induced by overall hull girder bending and torsion of the vessel. Lateral pressure is due to water pressure and cargo. These load components are not always applied simultaneously, but more than one can normally exist and interact Hence, for more rational and safe design of ship structures, it is of crucial importance to better understand the interaction relationship of the buckling and ultimate strength for ship plating under combined loads. Actual ship plates are subjected to relatively small water pressure except for the impact load due to slamming and panting etc. The present paper describes an accurate and fast procedure for analyzing the elastic-plastic large deflection behavior up to the ultimate limit state of ship plates under combined loads. In this paper, the ultimate strength characteristics of plates under axial compressive loads and lateral pressure loads are investigated through ANSYS elastic-plastic large deflection finite element analysis with varying lateral pressure load level.

  • PDF

Secondary Buckling Behavior Analysis on the Ship's Plate under Combined Load(Lateral Pressure Load and Axial Compressive Load) (조합하중을 받는 선체판부재의 2차좌굴거동 해석)

  • Park Joo-Shin;Ko Jae-Yong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.12 no.1 s.24
    • /
    • pp.67-74
    • /
    • 2006
  • The ship plating is generally subjected to combined in-plane load and lateral pressure loads. In-plane loads include axial load and edge shear, which are mainly induced by overall hull girder bending and torsion rf the vessel. Lateral pressure is due to water pressure and cargo. These load components are not always applied simultaneously, but more than one can normally exist and interact. Hence, for more rational and safe design rf ship structures, it is of crucial importance to better understand the interaction relationship of the buckling and ultimate strength for ship plating under combined loads. Actual ship plates are subjected to relatively small water pressure except for the impact load due to slamming and panting etc. The present paper describes an accurate and fast procedure for analyzing the elastic-plastic large deflection behavior up to the ultimate limit state of ship plates under combined loads. In this paper, the ultimate strength characteristics of plates under axial compressive loads and lateral pressure loads are investigated secondary buckling behavior through ANSYS elastic-plastic large deflection finite element analysis with varying lateral pressure load level.

  • PDF

A Study on the Ultimate Load Assessment and the Performance Prediction of a Wind Turbine (풍력터빈 출력예측 및 극한하중평가에 관한 연구)

  • Kim, Bum-Suk;Eum, Hark-Jin;Kim, Mann-Eung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.5
    • /
    • pp.326-333
    • /
    • 2009
  • Design life-time of a wind turbine is required to be at least 20 years. In the meantime, the wind turbine will experience a lot of load cases such as extreme loads and fatigue loads which will include several typhoons per year and extreme gusts with 50 years recurrence period as well as endless turbulence flow. Therefore, IEC61400-1 specifies design load cases to be considered in the wind turbine design and requires the wind turbine to withstand the load cases in various operational situations. This paper investigates the ultimate loads which the wind turbine will experience for 20 years and their characteristics based on the IEC61400-1 using an aero-elastic software, GH-Bladed. And the performance characteristics of a wind turbine such as electrical power generation and annual energy yield are also investigated.

Ultimate Load Assessment and Performance Prediction of a Horizontal Axis Wind Turbine (수평축 풍력터빈 출력예측 및 극한하중평가)

  • Kim, Bum-Suk;Kim, Mann-Eung;Eum, Hark-Jin
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2880-2885
    • /
    • 2008
  • Design lifttime of a wind turbine is required to be at least 20 years. In the meantime, the wind turbine will experience a lot of load cases such as extreme loads and fatigue loads which will include several typhoons per year and extreme gusts with 50 years recurrence period as well as endless turbulence flow. Therefore, IEC61400-1 specifies design load cases to be considered in the wind turbine design and requires the wind turbine to withstand the load cases in various operational situations. This paper investigates the ultimate loads which the wind turbine will experience for 20 years and their characteristics based on the IEC61400-1 using an aero-elastic software, GH-Blade. And the performance characteristics of a wind turbine such as electrical power generation and annual energy yield are also investigated.

  • PDF

A Study on the Deformation Behavior of the Underground Pipe under the External Load (외부하중에 의한 지중 매설관의 변형거동 특성에 관한 연구)

  • Yoo, Hankyu;Park, Eonsang;Kim, Dongryul
    • Journal of the Korean GEO-environmental Society
    • /
    • v.9 no.6
    • /
    • pp.71-79
    • /
    • 2008
  • The underground conduit laid under different environments exhibits various behaviour according to the ground and external load as well as the loading time and conditions, so on. As the environmental conditions are usually different even within the same area, it is very difficult to correctly predict the stress conditions and behaviour of the underground conduit using currently available theoretical analysis. Especially, it is not yet satisfied in Korea for the evaluation of the underground conduit under the influence of the load of vehicles or unexpected loading conditions. Thus, in this study the assessment for the excavation depth and ground disturbance was carried out with a large box model test and numerical analysis. Numerical analysis was also performed for the assessment of dynamic loading conditions like railway load.

  • PDF

Comparison of Wind Load Provisions Based on the Wind Buckling Behaviors of Plant Tank (플랜트 탱크의 좌굴 거동에 근거한 풍하중 설계기준 비교 연구)

  • Bae, Doobyong;Park, Il Gyu;Park, Jang Ho;Oh, Chang Kook
    • Journal of Korean Society of Steel Construction
    • /
    • v.28 no.3
    • /
    • pp.203-211
    • /
    • 2016
  • There are no consistent wind load provisions to design the plant tank in Korea. To suggest the appropriate design wind load, five kinds of specifications including KS B 6283, API 650, ASCE 7-10, EN 1991-1-4 are compared. To evaluate the adequacy of wind load specification in each code first, pressure coefficients were calculated in each code and compared with the results of wind tunnel test. Finite element analyses using linear bifurcation analysis were performed with the parameter of h/d and f/d (h : height of cylinderical part of tank, f : roof heigh, d : diameter of tank). By analyzing the results, appropriate wind load criteria which reflects the real wind actions and easy to apply will be suggested.