• Title/Summary/Keyword: 하이브리드 추진

Search Result 244, Processing Time 0.026 seconds

Performance Analysis of Neural Network Compensation Algorithm of Multiaxis Thrust Measurement Stand (다축시험대의 신경망 보상 알고리즘 성능 연구)

  • Kim, Joung-Keun
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.11 no.4
    • /
    • pp.52-58
    • /
    • 2007
  • The irregular fuel surface was observed by the visualization of hybrid rocket combustion. Even though the test condition maintained oxidizer rich environment, the irregular dark fuel surface was formed as the result of incomplete combustion. In order to investigate the correlation of the characteristics of oxidizer flow and the irregular fuel surface, various flow conditions were imposed such as swirl flow, induced swirl flow by helical fuel configuration and straight flow. Test results revealed no correlation was found between oxidizer flow condition and irregular fuel surface. And this can be a commonly observed phenomena in the tests with different fuel/oxidizer combination. Thus, the irregular fuel surface can be a result of the interaction of blowing flow of vaporized fuel and the boundary layer of oxidizer flow. A further study will be required to confirm the assumption for the formation of irregular fuel surface.

A Study on Combustion Characteristics of Hybrid Rocket with the Variation of L/D Ratio (하이브리드 로켓의 L/D 비 변화에 따른 연소특성 연구)

  • Kim Soo-Jong;Kim Jin-Kon;Lee Seung-Chul;You Woo-Jun;Lee Jung-Pyo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.9 no.4
    • /
    • pp.31-38
    • /
    • 2005
  • In this paper, the combustion characteristics of a hybrid propulsion system were studied with various L/D(length vs diameter) ratio of the single po.1 type solid fuel. Experiments were performed for 2 cases with the fixed grain port diameter and fuel length respectively. For the first case, results show that there are no large variations for regression rates as the L/D ratio changes. And as the L/D ratio increases, the O/F ratio decreases and thrust, characteristic velocity tends to increase. For the second case, there is no large change for O/F ratio, thrust and characteristic velocity as L/D ratio changes. On the other hand, as the L/D ratio decreases, only the regression rate tends to increase. Experimentally, exponent n in $\dot{r}=a{G_0}^n$ was found about 0.5 and then the O/F ratio was shown nearly constant. In the experiment, PE and gas oxygen were used as a fuel and an oxidizer.

Propulsion System of R.O.K.N Warships & Future of Propulsion System (대한민국 해군 군함의 추진체계와 미래의 추진체계 발전방안 연구)

  • Shin, Seungmin;Park, Jong-hwa;Hong, Yong-pyo;Oh, Kyungwon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.25 no.6
    • /
    • pp.53-59
    • /
    • 2021
  • The ROK Navy operates many war ships despite its short history. Various types of war ships, such as submarines, destroyers, frigates, corvette etc., use suitable propulsion systems for the operational requirements of each war ship. A hybrid propulsion system was introduced to change from the current mechanical propulsion system to an electric propulsion system according to the changing patterns of naval warfare, and it is expected that an integrated electric propulsion system will also be introduced. Therefore, this paper investigates the propulsion system of major ships operated by the Korean Navy, predicts the changes in future naval warfare, and proposes a propulsion system for future ships.

A Study on the Certification Standard Analysis and Safety Assurance Method for Electric Propulsion System of the Urban eVTOL Aircraft (도심용 eVTOL 항공기 전기추진시스템 기준 분석 및 안전성 확보 방안에 관한 연구)

  • Kim, Juyoung;Yoo, Minyoung;Gwon, Hyukrok;Gil, Ginam;Gong, Byeongho;Na, Jongwhoa
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.3
    • /
    • pp.42-51
    • /
    • 2022
  • An eVTOL aircraft, which is required to operate with low pollution/low noise in urban environments, mostly use battery-powered electric propulsion systems as power sources, not traditional propulsion systems such as reciprocating or turbine engines. Accordingly, certification preparation for the electric propulsion system and securing the safety of the electric propulsion system, are important issues. In the U.S., special technical standards equivalent to FAR Part 33 were issued to certify electric engines, and in Europe, various special conditions were established to certify electric propulsion systems. Thus, in Korea, the technical standards for the electric propulsion system for eVTOL aircraft must also be prepared in line with the U.S. and Europe. In this paper, SC E-19, the technical standard of the electric/hybrid propulsion system (EHPS) in special conditions, was analyzed. Additionally, securing the safety of the electric propulsion system of the aircraft are proposed, through the collaboration of SC E-19 technical standards with the existing aircraft safety evaluation procedure ARP 4761. Finally, through a case study of the Ehang 184 electric propulsion system, it has been confirmed that the proposed safety assurance method is applicable at the aircraft level.

Parametric Study on the Design of Hybrid Motor for Air Launch System (공중발사체를 위한 하이브리드 모터 설계)

  • Gwon, Sun Tak;Lee, Chang Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.3
    • /
    • pp.72-78
    • /
    • 2003
  • In this paper, the feasibility study and the parametric design of hybrid motor with HTPB/LOX were conducted for micro air launch system. Design results were compared with 1st stage of Pegasus XL for verification of hybrid motor. Results showed that hybrid motor replace solid booster if Isp of hybrid motor reaches 330sec. In addition, mission analysis was established for micro air launch system, and parametric design was conducted with design variables: number of port, initial oxidizer flux, and chamber pressure. And the region of Isp was identified by parametric study which satisfied design constraints and mission analysis.

The Patterns of Streamwise Vortex on the Fuel Surface in Hybrid Rocket Combustion (하이브리드 로켓 모터 연소 중 발생하는 streamwise 와류 특성)

  • Shin, Kyung-Hoon;Park, Kyung-Su;Mon, Khin Oo;Lee, Chang-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.649-652
    • /
    • 2011
  • A series of hybrid rocket combustion experiments were carried out with PMMA/GOx changing diameter and length of the disk installed at pre-chamber. The disk can generate vortex shedding flow and change flow conditions prior to entering the fuel grain which could also alter the combustion characteristics and pressure oscillations. Isolated dimple-like surface roughness patterns distributed all over the fuel surface, which can be thought of as a realization of the inherent flow instability. It is very likely that the formation of cell structures is originated from the modification of boundary layer characteristics of an entering oxidizer flow caused by a blowing effect mainly taking place near the wall. This coincided with our LES results. It would be a meaningful basis to understand combustion instability of hybrid rocket motor.

  • PDF

Firing Test for Hybrid Rocket Motor with 650 kgf Thrust Level (추력 650 kgf 급 하이브리드 로켓 모터의 연소시험)

  • Lee, Jung-Pyo;Kim, Soo-Jong;Kim, Gi-Hun;Cho, Jung-Tae;Kim, Hak-Chul;Woo, Kyong-Jin;Do, Gyu-Sung;So, Jung-Soo;Oh, Jung-Soo;Cho, Min-Gyung;Moon, Hee-Jang;Sung, Hong-Gye;Kim, Jin-Kon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.503-506
    • /
    • 2009
  • In this study, we presented the results of static firing tests on the PE/LN2O hybrid rocket motor, which has a thrust of 650 kgf level. Through the early tests, we found that the combustion chamber pressure and the thrust were lower than design values because an actual oxidizer flow rate was less than that expected. In order to complement this result, the methods of decrease of nozzle throat and the increase of oxidizer mass flow rate were conducted in the next experiment, and we studied the combustion phenomena with the experimental results. Also we compared and analyzed a difference of combustion characteristics on scale effect. It show that a sub-scale motor regression rate was a little less than that of a lab-scale motor with the same oxidizer mass flux. Results of this study might be used as a basic data for development of hybrid sounding rocket.

  • PDF

Investigation of Combustion Characteristics of Hybrid Rocket with Tapered Grain Port (경사진 그레인 포트를 가진 하이브리드 로켓의 연소 특성)

  • Kim, Jae-Woo;Kim, Soo-Jong;Oh, Jung-Soo;Do, Gyu-Sung;So, Jung-Soo;Moon, Hee-Jang
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.2
    • /
    • pp.8-14
    • /
    • 2011
  • In this paper, the combustion characteristics of hybrid rocket fuel with tapered grain port were investigated experimentally. The charging efficiency of convergent and divergent port shape fuel with $1^{\circ}$ taper angle was 6.8% higher than that of cylindrical port shape fuel. The regression rate was increased about 17.5% by using the convergent port shape fuel. On the other hand, in case of divergent port shape fuel, no notable difference of regression rate was observed when compared to that of the cylindrical port shape fuel. In the case of convergent port shape fuel, characteristic velocity and its efficiency were notably increased with respect to cylindrical port fuel. It was found that convergent port shape of hybrid rocket fuel can lead to a better option compared to the conventional cylindrical port in terms of combustion efficiency and performance improvement.

An Analysis and Reduction Design of Combustion Instability Generated in Hybrid Rocket Motor (하이브리드 로켓 모터의 연소불안정 분석 및 저감 설계)

  • Lee, Jungpyo;Rhee, Sunjae;Kim, Jinkon;Moon, Heejang
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.18 no.4
    • /
    • pp.18-25
    • /
    • 2014
  • In this paper, the mechanism of the combustion instability which may occur in a hybrid rocket motor with a diaphragm was studied. And the new design for a hybrid motor grain was suggested. It could increase a regression rate of solid fuel, and reduce a large pressure oscillation in a hybrid rocket motor with a diaphragm. It was confirmed that the main mechanism of a large pressure oscillation was hole-tone, and it was caused by a collision between a diaphragm and a vortex which was generated in a pre-chamber. And 'Stepped Grain' design which had the mechanism for high regression rate in a motor with a diaphragm and could reduce a combustion instability was suggested.

Development of Hybrid/Dual Swirl Jet Combustor for a MGT (Part II: Numerical Study on Isothermal Flow) (마이크로 가스터빈용 하이브리드/이중 선회제트 연소기 개발 (Part II: 비반응 유동에 관한 수치해석))

  • Mun, Sun-Yeo;Hwang, Cheol-Hong;Lee, Kee-Man
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.5
    • /
    • pp.70-79
    • /
    • 2013
  • The isothermal flow structure and mixing characteristics of a hybrid/dual swirl jet combustor for micro-gas turbine (MGT) were numerically investigated. Location of pilot burner, swirl angle and direction were varied as main parameters with the identical thermal load. As a result, the variations in location of pilot nozzle, swirl angle and direction resulted in the significant change in turbulent flow field near burner exit, in particular, center toroidal recirculation zone (CTRZ) as well as turbulent intensity, and thus the flame stability and emission performance might be significantly changed. With the comparison of experimental results, the case of swirl angle $45^{\circ}$ and co-swirl flow including optimum location of pilot burner were chosen in terms of the flame stability and emissions for the development of hybrid/dual swirl jet combustor.