• Title/Summary/Keyword: 하이브리드 전기 자동차

Search Result 218, Processing Time 0.037 seconds

Operation Modes of a Power Split Hybrid Electric Vehicle (동력 분기 하이브리드 전기 자동차의 운행 모드 시뮬레이션)

  • Ahn Kuk-Hyun;Cho Sung-Tae;Lim Won-Sik;Park Yeong-Il;Lee Jang-Moo
    • New & Renewable Energy
    • /
    • v.2 no.2 s.6
    • /
    • pp.23-27
    • /
    • 2006
  • The power split hybrid powertrain is considered to be one of the most prospective configuration for the hybrid electric vehicle (HEV). Toyota Prius, representing this type of vehicle, showed outstanding performances in fuel efficiency, emission reduction and acceleration. The excellence is largely due to the fact that it utilizes almost all operation modes of HEV. Those modes include ZEV (Zero Emission Vehicle) driving, idle stop, fuel cut-off, power assist, active charging, regenerative braking and so forth. In this paper, a few of the mode operations were simulated using AVL Cruise. Also, control logics to operate the powertrain in each mode were developed. The states of powertrain components were displayed and analyzed. By controlling the three components (engine, motor and generator), it was possible to run the powertrain in several hybrid operation modes.

  • PDF

A Study on the Efficiency Improvement through the Switch Control of a Compound Energy Storage System for Vehicles (스위치 제어를 통한 자동차용 복합형 에너지 저장 장치의 효율 개선에 관한 연구)

  • Kim, Byoung-Hoon;Lee, Back-Haeng;Jeong, Jin-Beom;Shin, Dong-Hyun;Song, Hyun-Sik;Kim, Hee-Jun
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.996-997
    • /
    • 2008
  • 본 논문에서는 마일드 하이브리드 자동차에 적용 가능한 복합형 에너지 저장 장치의 운용 효율 및 수명 개선이 가능한 스위치 제어 알고리즘을 제안하였다. 제안한 제어 알고리즘은 복합형 에너지 저장 장치를 구성하는 축전지와 울트라커패시터의 전압, 전류, 전력 및 SOC의 변화에 따라 스위치를 적절히 제어함으로써, 시스템 전체의 운용 효율을 개선하고, 또한 축전지에 대전류 충/방전 상황 발생을 제한시켜 축전지의 수명저하 현상을 둔화시킨다. 본 논문에서는 마일드 하이브리드 자동차의 운행 조건을 모사한 사이클 프로파일과 차량 시뮬레이터 장비를 활용하여, 단순병렬 구성의 에너지 저장장치와 스위치 제어 알고리즘이 적용된 에너지 저장장치의 운용효율을 비교함으로써 제안한 알고리즘의 유용성을 확인하였다.

  • PDF

Comparative Study of Different Drive-train Driving Performances for the Input Split Type Hybrid Electric Vehicle (입력분기방식 하이브리드 전기자동차의 구동계 구조에 따른 동력 성능 비교 분석)

  • Kim, Jeong-Min
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.4
    • /
    • pp.69-75
    • /
    • 2017
  • In this study, the performances of five input split type hybrid electric vehicle sub-drivetrains were analyzed. The five sub-drivetrains consist of chain, helical gears and planetary gears. For the analyzing above five sub-drivetrains, the mathematical equations were derived. From the analysis, we found that the sub-drivetrain with chain shows slower acceleration performance and larger energy consumption on the city driving. And, the sub-drivetrain with only helical gear shows smallest energy consumption on the city driving. If the sub-drivetrain can change its gear speed, it shows fastest acceleration performance, but it has largest energy consumption on the city driving due to its additional auxiliary components.

Study on the Smart Charging for Plug-in Hybrid Electric Vehicle (플러그인 하이브리드 전기자동차의 스마트 충전에 관한 연구)

  • Roh, Chul-Woo;Kim, Min-Soo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.349-352
    • /
    • 2008
  • The most concerning issue in these days is the energy crisis by increasing threat of global warming and depletion of natural resources. In the situations, the Plug-in Hybrid Electric Vehicle (PHEV) is drawing attention from many countries for the next generation's car which has higher fuel efficiency and lower environmental impact. This paper presents simulation results about the limit capacity of central power-grid which doesn't have enough surplus electric power for charging PHEVs. Therefore, this paper also presents a smart charging system that can charge the PHEVs with a function of distributing demands of charging. The smart charging system is an agent facility between the government and consumer, which can recommend the best time to charge the battery of PHEVs by the lowest energy cost. This function of choosing time-slots is the technical system for the government which wants to control the consumption rate of electric power for PHEVs. Finally, this paper presents the economic feasibility of PHEVs from the two kinds of price system, midnight electric price and home electric price.

  • PDF

Low voltage DC-to-DC converter integrating boost converter into forward converter for charging auxiliary battery in hybrid electric vehicle (부스트컨버터와 포워드컨버터의 결합을 이용한 하이브리드 전기자동차의 보조배터리 충전용 저전압 직류 변환장치)

  • Lee, Ju-Young;Kim, Seong-Hye;Kang, Feel-soon
    • Proceedings of the KIPE Conference
    • /
    • 2012.07a
    • /
    • pp.136-137
    • /
    • 2012
  • 본 논문에서는 하이브리드 전기자동차의 전장시스템 에너지 공급을 위한 보조배터리 충전용 저전압 직류 변환장치(Low voltage DC-to-DC Converter, LDC)를 제안한다. 차량 탑재용의 특성상 소형 경량화 설계 기술을 통한 연비증가, 동력성능의 향상이 매우 중요하다. 본 논문에서 제안하는 LDC는 부스트와 포워드 컨버터 구조를 혼합한 형태로 부스트 컨버터의 입력 인덕터를 변압기로 대체하여 포워드 컨버터와 결합시킴으로서 출력전압의 승 강압 동작을 구현한다. 따라서 차량 시동 시 내연기관을 구동하기 위한 승압모드로 동작하고, 그 외 일반적인 경우는 차량 내 각종 전장부하에 전력을 공급하기 위한 강압모드로 동작된다. 제안된 컨버터의 동작 모드에 따른 이론적 분석을 시행하고 PSIM을 이용한 시뮬레이션을 통해 타당성을 검증한다.

  • PDF

Operation Modes of a Power Split Hybrid Electric Vehicle (동력 분기 하이브리드 전기 자동차의 운행 모드 시뮬레이션)

  • Ahn, Kuk-Hyun;Cho, Sung-Tae;Lim, Won-Sik;Park, Yeong-Il;Lee, Jang-Moo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.547-550
    • /
    • 2006
  • The power split hybrid power train is considered to be one of the most prospective configuration for the hybrid electric vehicle (HEV). Toyota Prius, representing this type of vehicle, showed outstanding performances in fuel efficiency, emission reduction and acceleration. The excellence is largely due to the fact that it utilizes almost all operation modes of HEV. Those modes include ZEV (Zero Emission Vehicle) driving, idle stop, fuel cut-off, power assist, active charging, regenerative braking and so forth. In this paper, a few of the mode operations were simulated using AVL Cruise. Also, control logics to operate the powertrain in each mode were developed. The states of powertrain components were displayed and analyzed. By controlling the three components (engine, motor and generator), it was possible to run the powertrain in several hybrid operation modes.

  • PDF

Efficiency analysis of the power conversion system in a hybrid electric vehicle according to DC operating voltage level (하이브리드 전기자동차에서 직류 전압 수준에 따른 전력변환시스템의 효율 분석)

  • Lee, Jin-Hyeok;Back, Sung-Hoon;Kim, Sang-Hoon
    • Proceedings of the KIPE Conference
    • /
    • 2015.11a
    • /
    • pp.139-140
    • /
    • 2015
  • 본 논문에서는 73kW IPMSM으로 구동되는 직렬 하이브리드 전기자동차 구동시스템에서 직류 전압의 운영 수준에 따른 전력변환시스템의 효율을 분석하였다. 여러 직류 전압 수준에 대한 배터리, 커패시터 및 3상 인버터의 손실을 PSIM을 이용한 시뮬레이션을 통해 분석하여 효율을 알아보았다. 직류 동작 전압을 증가시키면 배터리와 커패시터에서의 손실은 감소하지만, 인버터의 손실은 도통 손실과 스위칭 손실의 변동정도에 따라 달라진다. 분석 결과로 $300V_{dc}$에서 $600V_{dc}$로 직류 전압 운영 수준을 증가시키는 경우에 전력변환시스템의 효율은 증가하는 것을 확인하였다.

  • PDF

An Operation Algorithm for a 2 Shaft Parallel Type Hybrid Electric Vehicle for Optimal Fuel Economy (2축 병렬형 하이브리드 차량의 최저 연비 주행 알고리즘)

  • 최득환;김현수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.5
    • /
    • pp.122-130
    • /
    • 2001
  • In this paper, an operational algorithm for a 2-shaft parallel hybrid electric vehicle is suggested for the minimization of operation cost. The operation cost is obtained as a summation of the engine fuel cost and the motor electricity cost. The electrical cost function is estimated in case of motoring, and generating when the recuperation is carried out during the braking. In addition, weight function is introduced in order to maintain the battery state of charge. Based on the operation algorithm, the optimal engine operation point that minimizes the operation cost is obtained with respect to the required vehicle power for every state of charge of battery. The optimal operation point provides the optimal power distribution of the engine and the motor for a required vehicle power Simulation was performed and the fuel economy of the hybrid vehicle was compared to that of the conventional vehicle. Simulation results showed that hybrid vehicle's fuel economy can be improved as much as 45∼48% compared to the conventional vehicle's.

  • PDF

A Study of Increasing Regeneration Energy and Braking Using Super Capacitor(EDLC) (슈퍼커패시터를 이용한 회생에너지 증대 및 제동에 관한 연구)

  • Kwon, Oh-Jung;Park, Chang-Kwon;Oh, Byeong-Soo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.6
    • /
    • pp.24-33
    • /
    • 2006
  • This experiment explains about electrical braking equipment which will be used for 1.2kW PEMFC HEV. The equipment is made of BLDC motor and super capacitor(EDLC). The circuit is designed for regeneration braking that can save the energy from low voltage of generation with BLDC motor. Increasing a regeneration energy from braking system is effected with regeneration current and SoC of super capacitor(EDLC). Electrical braking in electrical vehicle is suitable for regeneration braking with dynamic braking together.

Modeling of the Thermal Behavior of a Lithium-Ion Battery Pack (리튬 이온 전지 팩의 열적 거동 모델링)

  • Yi, Jae-Shin
    • Journal of Energy Engineering
    • /
    • v.20 no.1
    • /
    • pp.1-7
    • /
    • 2011
  • The performance and life-cycle costs of electric vehicle(EV) and hybrid electric vehicle(HEV) depend inherently on battery packs. Temperature uniformity in a pack is an important factor for obtaining optimum performance for an EV or HEV battery pack, because uneven temperature distribution in a pack leads to electrically unbalanced battery cells and reduced pack performance. In this work, a three-dimensional modeling was carried out to investigate the effects of operating conditions on the thermal behavior of a lithium-ion battery pack for an EV or HEV application. Thermal conductivities of various compartments of the battery were estimated based on the equivalent network of parallel/series thermal resistances of battery components. Heat generation rate in a cell was calculated using the modeling results of the potential and current density distributions of a battery cell.