• Title/Summary/Keyword: 하이브리드 시스템 모델링 및 시뮬레이션

Search Result 25, Processing Time 0.022 seconds

Hybrid Systems Modeling and Simulation - Part II: Interoperable Simulation Environment (하이브리드 시스템 모델링 및 시뮬레이션 - 제2부: 시뮬레이터 연동 환경)

  • 임성용;김탁곤
    • Journal of the Korea Society for Simulation
    • /
    • v.10 no.3
    • /
    • pp.15-30
    • /
    • 2001
  • Hybrid simulation may employ different types of simulation based on which models in different system types are developed. The simulation requires simulation time synchronization and data exchange between such simulators, which is called simulators interoperation. This paper develops such interoperable simulation environments for modeling and simulation of hybrid systems whose components consist of continuous and discrete event systems. The environments, one for centerized and the other for distribute, support interoperation between a discrete event simulator of DEVSim++ and a continuous simulator of MATLAB. The centerized environment, HDEVSim++, is developed by extending the sxisting DEVSim++ environment; the distributed environment, HDEVSimHLA, is developed using the HLA/RTl library. Verification of both environments is made and performance comparison between the two using a simple example is presented. .

  • PDF

Development of Algorithm for Advanced Driver Assist based on In-Wheel Hybrid Driveline (인휠 전기 구동 기반의 능동안전지원 알고리즘 개발)

  • Hwang, Yun-Hyoung;Yang, In-Beom
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.12
    • /
    • pp.1-8
    • /
    • 2017
  • This paper presents the development of an adaptive cruise control (ACC) system, which is one of the typical advanced driver assist systems, for 4-wheel drive hybrid in-wheel electric vehicles. The front wheels of the vehicle are driven by a combustion engine, while its rear wheels are driven by in-wheel motors. This paper proposes an adaptive cruise control system which takes advantage of the unique driveline configuration presented herein, while the proposed power distribution algorithm guarantees its tracking performance and fuel efficiency at the same time. With the proposed algorithm, the vehicle is driven only by the engine in normal situations, while the in-wheel motors are used to distribute the power to the rear wheels if the tracking performance decreases. This paper also presents the modeling of the in-wheel motors, hybrid in-wheel driveline, and integrated ACC control system based on a commercial high-precision vehicle dynamics model. The simulation results obtained with the model are presented to confirm the performance of the proposed algorithm.

An Implementation of IEEE 1516.1-2000 Standard with the Hybrid Data Communication Method (하이브리드 데이터 통신 방식을 적용한 IEEE 1516.1-2000 표준의 구현)

  • Shim, Jun-Yong;Wi, Soung-Hyouk
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37C no.11
    • /
    • pp.1094-1103
    • /
    • 2012
  • Recently, software industry regarding national defense increases system development of distributed simulation system of M&S based to overcome limit of resource and expense. It is one of key technologies for offering of mutual validation among objects and reuse of objects which are discussed for developing these systems. RTI, implementation of HLA interface specification as software providing these technologies uses Federation Object Model for exchanging information with joined federates in the federation and each federate has a characteristic that is supposed to have identical FOM in the federation. This technology is a software which is to provide the core technology which was suggested by the United state's military M&S standard framework. Simulator, virtual simulation, and inter-connection between military weapons system S/W which executes on network which is M&S's core base technology, and it is a technology which also can be used for various inter-connection between S/W such as game and on-line phone. These days although RTI is used in military war game or tactical training unit field, there is none in Korea. Also, it is used in mobile-game, distribution game, net management, robot field, and other civilian field, but the number of examples are so small and informalized. Through this developing project, we developed the core technique and RTI software and provided performance of COTS level to improve communication algorithms.

Design and Implementation of Interface System for Swarm USVs Simulation Based on Hybrid Mission Planning (하이브리드형 임무계획을 고려한 군집 무인수상정 시뮬레이션 시스템의 연동 인터페이스 설계 및 구현)

  • Park, Hee-Mun;Joo, Hak-Jong;Seo, Kyung-Min;Choi, Young Kyu
    • Journal of the Korea Society for Simulation
    • /
    • v.31 no.3
    • /
    • pp.1-10
    • /
    • 2022
  • Defense fields widely operate unmanned systems to lower vulnerability and enhance combat effectiveness. In the navy, swarm unmanned surface vehicles(USVs) form a cluster within communication range, share situational awareness information among the USVs, and cooperate with them to conduct military missions. This paper proposes an interface system, i.e., Interface Adapter System(IAS), to achieve inter-USV and intra-USV interoperability. We focus on the mission planning subsystem(MPS) for interoperability, which is the core subsystem of the USV to decide courses of action such as automatic path generation and weapon assignments. The central role of the proposed system is to exchange interface data between MPSs and other subsystems in real-time. To this end, we analyzed the operational requirements of the MPS and identified interface messages. Then we developed the IAS using the distributed real-time middleware. As experiments, we conducted several integration tests at swarm USVs simulation environment and measured delay time and loss ratio of interface messages. We expect that the proposed IAS successfully provides bridge roles between the mission planning system and other subsystems.

Control process design for linking energy storage device to ship power source (선박 전력원에 에너지 저장장치 연계를 위한 제어 프로세스 설계)

  • Oh, Ji-Hyun;Lee, Jong-Hak;Oh, Jin-Seok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.11
    • /
    • pp.1603-1611
    • /
    • 2021
  • As IMO environmental regulations are tightened, the need to establish a system that can reduce emissions is increasing, and for this purpose, various power control management systems have been studied and implemented as a new energy management system for ships. In this study, we design a control process through modeling for Bi-Directional Converter (BDC) application with bi-directional power flow to link batteries, which are energy storage devices, to conventional generator power systems, and propose mechanisms for batteries optimized for varying loads. This work models MATLAB/Simulink as a BDC and simulates current control and state of charge (SOC) optimization at the time of charging and discharging batteries according to load scenarios. Through this, the battery, power, and load were interlocked so that the generator operated on board could be operated in the optimal operation range, and power control management was performed to enable the generator to operate in the high fuel efficiency range.