• Title/Summary/Keyword: 하이브리드 무인 비행기

Search Result 3, Processing Time 0.06 seconds

Design, Control and Evaluation Methods of PEM Fuel Cell Unmanned Aerial Vehicle: A review (고분자 전해질 연료전지 하이브리드 무인 비행기의 설계, 제어, 평가 기법 리뷰)

  • Cha, Moon-Yong;Kim, Minjin;Sohn, Young-Jun;Yang, Tae-Hyun
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.25 no.4
    • /
    • pp.405-418
    • /
    • 2014
  • Fuel cells are suitable for a power plant of a unmanned aerial vehicle (UAV) as it is not only environmentally friendly and quiet but also more efficient than an internal combustion engine. A fuel cell hybrid UAV has better performance in endurance than a fuel cell only or battery only UAV. One of the key purposes of making fuel cell hybrid UAVs is having long endurance and now maximum 26 hours of flight is possible. Because optimal design and control methods for fuel cell hybrid UAVs are absolutely needed for their long endurance we have to check the methods. The aircraft made by using application-integrated design method has less BOP mass and better performances. The optimal design and control methods are generally based on computer simulations or Hardware-In-The-Loop simulations by using dynamic models for their design and control. The Hardware-In-The-Loop simulation (HILS) is to use a hardware device like a fuel cell stack as well as a simulation program and it allows for making optimally designed applications. This paper introduce efficient methods of design, control and evaluation for the fuel cell hybrid UAVs.

A study on the co-operative modeling between discrete-event system and continuous-time system for UAV system (UAV를 위한 이산사건 및 연속시간 시스템간의 연동 모델링에 대한 연구)

  • Kang, Kwang-Chun;Choi, Sung-Do;You, Yong-Jun
    • Journal of the Korea Society for Simulation
    • /
    • v.15 no.1
    • /
    • pp.43-50
    • /
    • 2006
  • The major objective of this paper is to propose a hybrid simulation environment for autonomous UAV system by integrating the continuous-time model with discrete-event model. Proposed system is able to support high autonomous behavior by combining the planner, recognizer, and controller model to deal with the HL20 AIRPLANE model. Thus, the high level decision may be efficiently issued even upon the unexpected circumstance. The proposed system model has been successfully verified by several simulation test performed on the DEVS simulation S/W environment.

  • PDF

Ground Integrated Test for the Hybrid Electric Propulsion System (하이브리드 전기추진 시스템 지상통합시험)

  • Lee, Bo-Hwa;Kim, Young-Mun;Park, Poo-Min;Kim, Keun-Bae;Cha, Bong-Jun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.772-776
    • /
    • 2011
  • EAV-2, which has a solar cell, fuel cell and battery as its power sources, is under development by KARI. Electric power sources are selected through voltage matching without power converter and controller and tested. The ground integrated test for integrated system is performed during 5 hr. it is confirmed that battery's power response is faster than other power sources at starting and transient condition, fuel cell and solar cell are a major electrical power during cruise condition. It is revealed that the used energy portions of fuel cell, solar cell and battery are 68%, 29%, 2.5% respectively.

  • PDF