• Title/Summary/Keyword: 하이브리드 로켓모터

Search Result 41, Processing Time 0.027 seconds

하이브리드 모터를 적용한 초소형 공중발사체 설계

  • 권순탁;이창진
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.77-77
    • /
    • 2002
  • 초소형 공중발사체 설계 시 하이브리드 모터의 적용가능성에 대한 연구를 실시하였다. HTPB/LOX를 추진제로 하여 마차바퀴형 연료 그레인, 산화제 탱크 가압방식을 사용하였고, 성능특성을 계산하기 위하여 하이브리드 연료의 연소율이 일정하다고 가정 하였다. 본 연구에 사용된 임무는 중량 3.5kg의 나노위성을 근지점 고도 200km, 원지점 고도 1,500km의 타원궤도로 진입시키는 것을 목적으로 하는 로켓의 1단 부분에 관한 것으로 1단의 발사속도는 M=1.3, 발사고도는 12km, 연소종료 고도는 40km이다. 1단에 대한 페이로드 중량은 127.5kg이고, 속도증가분($\Delta$V)은 3,330m/s이다. 모선은 F-4E를 사용하였고 모선의 특성상 발사체의 총 중량이 1,000kg이하로 제한되고 길이와 직경이 5m${\times}$5m로 제한되나 1단에 대한 길이의 제한조건은 현재까지 명확히 정립되지 않은 상태이다. 설계과정에서의 변수는 연료 그레인 포트 개수, 초기 산화제 플럭스, 연소실 압력을 사용했고, 설계 제한조건은 추진제 중량, 평균 비추력, 평균 추력, 연소시간, 1단 길이, 직경, 연소시간이고, 이들의 범위는 모선의 특성과 초소형 공중발사체의 임무특성에 맞게 설정하였다.

  • PDF

FMEA and FTA for Reliability Analysis of Hybrid Rocket Motor (하이브리드 로켓 모터의 신뢰성 분석을 위한 FMEA 및 FTA)

  • Moon, Keun Hwan;Kim, Dong Seong;Choi, Joo Ho;Kim, Jin Kon
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.21 no.4
    • /
    • pp.27-33
    • /
    • 2013
  • In this study, the FMEA and FTA for reliability analysis of hybrid rocket motor are performed, that was designed in the Hybrid Rocket Propulsion Laboratory of Korea Aerospace University. In order to carry out these analyses the structure of the hybrid rocket motor is hierarchically divided into 36 parts down to the component level and FMEA is carried out with 72 failure modes. Reliability is assessed based on the FMEA, and the results are used in the FTA to evaluate the overall system reliability. In the FMEA, the relationship between the cause and failure modes, effects and their risk priorities are evaluated qualitatively. 27 failure modes are chosen as those with the critical severity that should be improved with priority. As a result of the FMEA / FTA study, a series of design or material changes are made for the improvement of reliability.

Combustion Experiment Measurement Uncertainty for Hybrid Rocket Motor (하이브리드 로켓 모터에 대한 연소 실험 측정 불확도)

  • Kim, Soo-Jong;Moon, Hee-Jang;Kim, Jin-Kon
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.19 no.1
    • /
    • pp.7-14
    • /
    • 2011
  • In this study, the measurement uncertainty of combustion experimental system and experimental parameters for hybrid rocket were evaluated by B type evaluation method. The measurement uncertainty of all experimental parameters was lower than 3%. The highest value of expanded uncertainty was characteristic velocity efficiency with 2.83% and the expanded uncertainty of regression rate which is the design and performance parameter was indicated to 0.03%. These results shown that the reliability of hybrid combustion system was located within allowed limits.

The Characteristics of DC-shift in Hybrid Rocket (하이브리드 로켓에서의 DC-shift 발생 특성)

  • Kang, Dong-Hoon;Lee, Chang-Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.5
    • /
    • pp.456-466
    • /
    • 2010
  • Typical combustion instability such as DC-Shift found in the hybrid rocket motor is characterized by non-linearity. DC-Shift can occur in two different realizations. One is so-called a positive shift of measured DC voltage where the pressure increase suddenly. The other is a negative shift where the pressure drops abruptly. In the present work, specifically the negative DC-Shift was investigated to analyze the effect of oxidizer flow condition and the resonance between fundamental frequency and other ones, such as Helmholtz frequency, and acoustic frequency. Results show a peak frequency of several hundreds HZ shifts as combustion proceeds. A negative DC-shift was found as the result of phase cancellation between two dominant frequency, combustion frequency and flow related frequency. Still is it required to study further to identify the change of dominance of frequency during the combustion.

Scale Effect on Combustion Characteristics of N2O/PE Hybrid Rocket (N2O/PE 하이브리드 로켓의 스케일 변화에 따른 연소특성 연구)

  • Han, Seongjoo;Moon, Keunhwan;Kim, Jinkon;Moon, Heejang
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.797-802
    • /
    • 2017
  • This paper describes the scale effect of hybrid rocket motor which has blow-down oxidizer supply system. ResuIts show that the scale effect on regression rate is negligible using presently accessible scaling relation for $LN_2O$/PE propellant combination amid the absence of exactly proven scaling relation. It was also found that the characteristic velocity efficiency increases as motor scale increases. However, the characteristic velocity efficiency includes complicated parameters such as post-chamber configuration or geometry which can affect the entire flow field. It is therefore hard to conclude that the increase of efficiency is solely due to the enlargement of motor scale nor draw any conclusion on the scale effect which require a profound understanding of hybrid rocket scaling rules.

  • PDF

A Study on the Combustion Characteristics of Paraffin wax/LDPE Blended fuel (Paraffin wax/LDPE 혼합 연료의 연소 특성에 관한 연구)

  • Kim, Soo-Jong;Cho, Jung-Tae;Lee, Jung-Pyo;Moon, Hee-Jang;Sung, Hong-Gye;Kim, Jin-Kon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.14 no.2
    • /
    • pp.29-38
    • /
    • 2010
  • The experimental study on paraffin wax/LDPE blended fuel for hybrid rocket was performed. Various combustion characteristics of blended fuel were compared with pure paraffin, HTPB, HDPE and SP-1a fuel in order to evaluate the performance of blended fuel. The regression rate of lab-scale and large-scale motor using pure paraffin fuel was increased by 10.2 and 9.8 factor when respectively compared to that of HDPE. The regression rate factor of blended fuel was 3.4 in which the regression rate of blended fuel was higher than that of HTPB and HDPE, but lower than that of pure paraffin, SP-1a fuel. The values of characteristic velocity and specific impulse of blended fuel was higher than those of pure paraffin, HTPB and HDPE, and almost the same as SP-1a fuel. As these results, it was confirmed that blended fuel can be an effective solid fuel for hybrid rocket.

Development of Linear Control Valve for Oxidizer Flow Rate Control (산화제 유량제어를 위한 선형제어밸브 개발)

  • Lee, Seunghwan;Kim, Heuijoo;Kim, Gyeongmin;Kim, Jiman;Kim, Dongsik;Hwang, Heeseong;Yoo, Yeongjun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.139-141
    • /
    • 2017
  • By modulating the flow rate of $N_2O$ into a HR motor assembly, a control valve of a hybrid rocket engine plays a role to increase or decrease the thrust. In this study, the control valve has been designed to meet the requirements which are response speed(${\leq}$ about 1 second) and torque(${\geq}$ about $36N{\cdot}m$). Then, when analog signal 0~10V is applied, the situation where the valve is opened and closed has to be realized. To do this, the data values have to be entered into the actuator. Finally, the performance evaluation of the control valve has been performed to validate this product.

  • PDF

Frequency Response of Turbulent Flow to Momentum Forcing in a Channel with Wall Blowing (질량분사가 있는 채널 내부 난류 유동의 외부교란에 대한 주파수 특성)

  • Na, Yang;Lee, Chang-Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.1
    • /
    • pp.64-72
    • /
    • 2010
  • Due to the interaction between main oxidizer flow and the wall injected flow resulting from the regression process, a specific time characteristics identified in the frequency spectrum of streamwise velocity is generated in the hybrid rocket motor. In order to understand the response of the turbulent flow to two different types of external momentum forcing, LES analysis was conducted without considering the combustion. It turns out that both concentrated and distributed forcings do not lead to the disastrous resonance phenomenon. Energy contents are enhanced due to the added momentum but the peak frequency was not modified in the turbulent flow near the end of the rocket motor. Natural frequency of the flow system should be taken into account to further pursue the instability issue by using external forcing.

LES for Turbulent Duct Flow with Mass injection (덕트내부에서 질량분사가 있는 난류유동의 LES 해석)

  • Kim, Bo-Hoon;Na, Yang;Lee, Chang-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.05a
    • /
    • pp.210-213
    • /
    • 2010
  • Recent experimental data shows that the noticeable feature of irregular roughened spots on the fuel surface occurs during the combustion test. The generation of these unexpected patterns is likely to be resulted from the disturbed boundary layer due caused by wall blowing which is intended to simulate the process of fuel vaporization. LES without chemical reaction was conducted to investigate the flow characteristics at the near-fuel surface and the behavior of turbulent structures which is evolved by the wall blowing at the Reynolds number of 23,000. Cylindrical geometry was considered to get the most reality of the calculation results because real hybrid rocket motor is circular grain configuration. It was shown that the wall blowing pushed turbulent structures upwards making them tilted and this skewed displacement, in effect, left the foot prints of the structures on the surface. This change of kinematics may explain the formation of irregular isolated spots on the fuel surface observed in the experiment.

  • PDF

Optimal Mission Design of the Supersonic Air-launching Rocket (초음속 공중발사로켓의 임무형상 최적설계)

  • Choi, Youngchang;Lee, Jaewoo;Byun, Yunghwan
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.1 no.1
    • /
    • pp.67-72
    • /
    • 2005
  • Design and optimization study has been performed to obtain a supersonic air.launching mission for the nanosat launcher. Given mission is to launch 10kg payload to target orbit of $700km{\times}700km$. Additional design constraints are imposed by the mother plane. After the required velocity is obtained, the stag ing optimization is carried out. Serial analyses for the propulsion system and aerodynamics are performed then, the rocket trajectory optimization has been carried out. After several mission design and optimization iterations, the optimized mission which satisfies the mission target is obtained. Total weight of the three-staged air-launching rocket is 1231.4kg and the payload weight is 10 kg.

  • PDF