• Title/Summary/Keyword: 하이브리드제어

Search Result 769, Processing Time 0.028 seconds

The Study on Smart Farm of Apple Mango with Energy-mix Hybrid (애플망고 농가의 에너지-믹스 하이브리드 스마트 팜에 대한 연구)

  • Son, Jae Hwan;Lee, Seung Yong;Han, Chang Woo;Nah, Kyu Dong;Ha, Yu Shin
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2017.04a
    • /
    • pp.155-155
    • /
    • 2017
  • 최근 애플망고 스마트 농가에 에너지 사용량이 증가됨에 따라 에너지 절감을 위한 대책들과 화석연료를 대체하는 다양한 신재생에너지 도입에 대한 요구들이 늘고있다. 본 연구에서는 애플망고 스마트 농가에 여러 에너지원들을 혼합하여 사용할 수 있도록 실증시험 모델을 구축하고 운영함으로써 그 효용성을 검토하고자 하였다. 우선 애플망고 특성을 고려한 비닐온실의 최대 냉난방부하량과 에너지모델을 분석하여 신재생 에너지원들의 혼합 및 기존 공조설비와의 연계를 계산하였다. 애플망고 시험 농지로는 재배에 적합한 제주도 서귀포를 선정하였으며, 기존의 경유 난방기를 사용하는 비교시험 하우스, 기존의 경유와 태양광, 지하 공기 히트펌프 난방기를 혼합하여 사용하는 실증시험 하우스, 경유와 지하공기 히트펌프 난방기를 사용하는 대조시험 하우스를 10~11월 두 달간 운영하여 그 결과들을 평가하였다. 온실 내외부에 온도, 습도, CO2를 측정할 수 있는 6점의 센서부들을 설치하였고, 적산 전력계와 유량계를 설치하여 데이터를 수집하였으며, 모든 시험 데이터는 모바일 원격으로 제어 및 모니터링이 가능하도록 구성하였다. 시험 결과, 각 하우스들에서 수확한 과실의 수량과 품질은 유사하게 평가되었지만, 실증시험 하우스의 난방비가 비교시험 하우스보다 절감되었다. 하지만 실증시험 하우스의 경우 높은 시설유지비로 인해 이를 고려한 사용료는 비교시험 하우스보다 더 비싸게 평가되었다. 본 연구를 통해 생산된 잉여전력을 매전할 때 이로 인한 이용비는 비교시험 하우스보다 더 경제적임을 확인할 수 있었다. 또한 기존의 경유와 지하공기 히트펌프 난방기를 혼합한 대조시험 하우스의 난방비용이 경제성에서 더 유리함을 알 수 있었다. 따라서 본 연구를 통해 애플망고 스마트 농가에 적합한 에너지-믹스 모델을 구축할 수 있었으며, 다양한 신재생에너지들의 효용성들을 검토할 수 있었다.

  • PDF

Optimal Design of Fuzzy-Neural Networkd Structure Using HCM and Hybrid Identification Algorithm (HCM과 하이브리드 동정 알고리즘을 이용한 퍼지-뉴럴 네트워크 구조의 최적 설계)

  • Oh, Sung-Kwun;Park, Ho-Sung;Kim, Hyun-Ki
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.50 no.7
    • /
    • pp.339-349
    • /
    • 2001
  • This paper suggests an optimal identification method for complex and nonlinear system modeling that is based on Fuzzy-Neural Networks(FNN). The proposed Hybrid Identification Algorithm is based on Yamakawa's FNN and uses the simplified inference as fuzzy inference method and Error Back Propagation Algorithm as learning rule. In this paper, the FNN modeling implements parameter identification using HCM algorithm and hybrid structure combined with two types of optimization theories for nonlinear systems. We use a HCM(Hard C-Means) clustering algorithm to find initial apexes of membership function. The parameters such as apexes of membership functions, learning rates, and momentum coefficients are adjusted using hybrid algorithm. The proposed hybrid identification algorithm is carried out using both a genetic algorithm and the improved complex method. Also, an aggregated objective function(performance index) with weighting factor is introduced to achieve a sound balance between approximation and generalization abilities of the model. According to the selection and adjustment of a weighting factor of an aggregate objective function which depends on the number of data and a certain degree of nonlinearity(distribution of I/O data), we show that it is available and effective to design an optimal FNN model structure with mutual balance and dependency between approximation and generalization abilities. To evaluate the performance of the proposed model, we use the time series data for gas furnace, the data of sewage treatment process and traffic route choice process.

  • PDF

Performance of Removal Efficiency for Mercury Compounds using Hybrid Filter System in a Coal-fired Power Plant (석탄화력발전시설에서의 하이브리드 집진기 적용 시 수은화합물 제어성능 평가)

  • Sung, Jin-Ho;Jang, Ha-Na;Back, Seung-Ki;Jung, Bup-Muk;Seo, Yong-Chil;Kang, Yeon-Suk;Lee, Chul-Kyu
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.30 no.3
    • /
    • pp.261-269
    • /
    • 2014
  • This study focused on the performance of the newly developed hybrid filter system to capture fine particulate matter and mercury compounds in a coal-fired power plant. The hybrid filter system combining bag-filter and electrostatic precipitator had been developed to remove fine particulate matter. However, it would have a good performance to control mercury compounds as well. In Hybrid filter capture system, the total removal efficiency of total mercury compounds consisting of particulate mercury ($Hg_p$), oxidized mercury ($Hg^{2+}$), and elemental mercury ($Hg^0$) was 66.2%. The speciation of mercury compounds at inlet and outlet of Hybrid filter capture system were 1.3% and 0% of $Hg_p$, 85.2% and 68.1% of $Hg^0$, and 13.5% and 31.9% of $Hg^{2+}$, respectively. In hybrid filter capture system injected with 100% of flue-gas, the removal efficiency of total mercury was calculated to increase to 93.5%.

Evaluation of steel fiber reinforcement effect in segment lining by full scale bending test (실물파괴실험에 의한 세그먼트 라이닝의 강섬유 보강 효과 평가)

  • Lee, Gyu-Phil;Bae, Gyu-Jin;Moon, Do-Young;Kang, Tae-Sung;Chang, Soo-Ho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.15 no.3
    • /
    • pp.215-223
    • /
    • 2013
  • An experimental research on the possibility of using fiber reinforced concrete precast tunnel segments instead of traditional reinforced concrete(RC) segment has been performed in europe. This solution allows removing the traditional reinforcement with several advantages in terms of quality and cost reduction. Full-scale bending tests were carried out in order to compare the behaviour of the segments under flexural actions on both rebar reinforced concrete and rebar-fiber reinforced elements. The test results showed that the fiber reinforced concrete can substitute the traditional reinforcement; in particular the segment performance is improved by the fiber presence, mainly in terms of crack.

3D Line Segment Detection using a New Hybrid Stereo Matching Technique (새로운 하이브리드 스테레오 정합기법에 의한 3차원 선소추출)

  • 이동훈;우동민;정영기
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.4
    • /
    • pp.277-285
    • /
    • 2004
  • We present a new hybrid stereo matching technique in terms of the co-operation of area-based stereo and feature-based stereo. The core of our technique is that feature matching is carried out by the reference of the disparity evaluated by area-based stereo. Since the reference of the disparity can significantly reduce the number of feature matching combinations, feature matching error can be drastically minimized. One requirement of the disparity to be referenced is that it should be reliable to be used in feature matching. To measure the reliability of the disparity, in this paper, we employ the self-consistency of the disunity Our suggested technique is applied to the detection of 3D line segments by 2D line matching using our hybrid stereo matching, which can be efficiently utilized in the generation of the rooftop model from urban imagery. We carry out the experiments on our hybrid stereo matching scheme. We generate synthetic images by photo-realistic simulation on Avenches data set of Ascona aerial images. Experimental results indicate that the extracted 3D line segments have an average error of 0.5m and verify our proposed scheme. In order to apply our method to the generation of 3D model in urban imagery, we carry out Preliminary experiments for rooftop generation. Since occlusions are occurred around the outlines of buildings, we experimentally suggested multi-image hybrid stereo system, based on the fusion of 3D line segments. In terms of the simple domain-specific 3D grouping scheme, we notice that an accurate 3D rooftop model can be generated. In this context, we expect that an extended 3D grouping scheme using our hybrid technique can be efficiently applied to the construction of 3D models with more general types of building rooftops.

Design of Series-Fed Microstrip Patch Array Antennas for Monopulse Radar Sensor Applications (모노 펄스 레이더 센서용 직렬 급전 마이크로스트립 패치 배열 안테나 설계)

  • Park, Eui-Joon;Jung, Ik-Soo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.11
    • /
    • pp.1248-1258
    • /
    • 2010
  • In this paper, a method for simultaneously realizing the sum and difference patterns which are required in the monopulse radar sensor systems, is presented by using single taper array antenna with rectangular microstrip patches. The widths of patches are first determined by the voltage weights which are synthesized for the fundamental array factor patterns to be applied to the monopulse operation by using the sidelobe levels(SLLs) control technique. As the bi-directionally series-fed technique is applied and the lengths of connecting lines between patches are appropriately adjusted, the single array generates two phase-shifted beams which activates out-of-phase and in-phase ports of a $180^{\circ}$ hybrid coupler to synthesize the sum and difference patterns. The simulated results on the configuration designed at 9.5 GHz are compared with measured results showing the validity of the proposed method.

Developement of Electrical Load Testing System Implemented with Power Regenerative Function (회생전력 기능을 갖는 전기부하시험장치 개발)

  • Do, Wang-Lok;Chai, Yong-Yoong
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.11 no.2
    • /
    • pp.179-184
    • /
    • 2016
  • The electrical load testing system developed from this study was designed to control rated-capacity-testing or variable-load-testing in an active and precise manner and save electric energy during testing, and also to convert the saved electric energy through the electrical load testing system to grid line. As for the device under testing, it was designed to be applied to not only transformer, rectifier, voltage regulator, inverter which require grid voltage source but, also applied to electric power, aerogenerator, photovoltaic, hybrid generator, battery, etc. which do not require grid voltage source. The system was designed to return the power consumed during the testing to the grid line by connecting the synchronizing pwm inverter circuit to the grid voltage source, and was also made to enable the being-tested system from disuse of approximately 93.4% energy when compared to the conventional load testing system which has used the passive resistor.

Design of Hybrid System for Battery Charge·Discharge using Photovoltaic/Fuel cell (태양광/연료전지용 배터리 충·방전 하이브리드 시스템 설계)

  • Park, Bong-Hee;Jo, Yeong-Min;Choi, Ju-Yeop;Cho, Sang-Yoon;Choy, Ick;Lee, Dong-Ha
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.4
    • /
    • pp.123-129
    • /
    • 2014
  • Photovoltaic and fuel cell systems can be used as power source in mobile robots. At this time the photovoltaic system generally generate power in daytime. The starting time of fuel cell is slower than the lithium battery. To compensate for these disadvantages, a battery charge-discharge system is used. Especially the bi-directional converter is used mainly in the charge-discharge method. The controller in a buck converter controls the input voltage of the converter to meet the maximum power point tracking(MPPT) performance. First of all, the simulations of hybrid system for battery charge-discharge system in each step simulated using solar and fuel cell modeling as input source in PSIM. Experiment of the buck and bi-directional converter system is conducted through using photovoltaic/fuel cel simulator(pCube) instead of solar and fuel cell. This hybrid system for battery charge discharge using photovoltaic/fuel cell generates emergency power for the communication system in mobile robot.

Design and Implementation of 3.3 kW On-Board Battery Charger for Electric Vehicles (전기자동차용 3.3 kW 탑재형 배터리 충전기 설계 및 제작)

  • Kim, Jong-Soo;Choe, Gyu-Yeong;Jung, Hye-Man;Lee, Byoung-Kuk;Cho, Young-Jin
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.15 no.5
    • /
    • pp.369-375
    • /
    • 2010
  • This paper presents a design and implementation of 3.3 kW on-board battery charger for electric vehicles or plug-in hybrid electric vehicles. Considering characteristics of the electric vehicles, a series-loaded resonant dc-dc converter and frequency control scheme are adopted to improve efficiency and reliability, and to reduce volume and cost. The developed on-board battery charger is designed and implemented by using high frequency of 80-130 kHz and zero voltage switching method. The experimental result indicates 92.5% of the maximum efficiency, 5.84 liters in volume, and 5.8kg in weight through optimal hardware design.

Development of 80kW Bi-directional Hybrid-SiC Boost-Buck Converter using Droop Control in DC Nano-grid (DC 나노그리드에서 Droop제어를 적용한 80kW급 양방향 하이브리드-SiC 부스트-벅 컨버터 개발)

  • Kim, Yeon-Woo;Kwon, Min-Ho;Park, Sung-Youl;Kim, Min-Kook;Yang, Dae-Ki;Choi, Se-Wan;Oh, Seong-Jin
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.22 no.4
    • /
    • pp.360-368
    • /
    • 2017
  • This paper proposes the 80-kW high-efficiency bidirectional hybrid SiC boost/buck converter using droop control for DC nano-grid. The proposed converter consists of four 20-kW modules to achieve fault tolerance, ease of thermal management, and reduced component stress. Each module is constructed as a cascaded structure of the two basic bi-directional converters, namely, interleaved boost and buck converters. A six-pack hybrid SiC intelligent power module (IPM) suitable for the proposed cascaded structure is adopted for high-efficiency and compactness. The proposed converter with hybrid switching method reduces the switching loss by minimizing switching of insulated gate bipolar transistor (IGBT). Each module control achieves smooth transfer from buck to boost operation and vice versa, since current controller switchover is not necessary. Furthermore, the proposed parallel control using DC droop with secondary control, enhances the current sharing accuracy while well regulating the DC bus voltage. A 20-kW prototype of the proposed converter has been developed and verified with experiments and indicates a 99.3% maximum efficiency and 98.8% rated efficiency.