• Title/Summary/Keyword: 하이드로 코드

Search Result 3, Processing Time 0.024 seconds

Sympathetic Detonation Modeling of PBXN-109 (PBXN-109가 장전된 155 mm 고폭탄의 순폭현상 해석)

  • Kim, Bohoon;Kim, Minsung;Yang, Seungho;Oh, Sean;Kim, Jinseok;Choi, Sangkyung;Yoh, Jai-Ick
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.18 no.5
    • /
    • pp.1-11
    • /
    • 2014
  • Sympathetic detonation (SD) of high explosives occurs when a detonating donor initiates neighboring acceptors. The present study focuses on the hydrodynamic simulation of one-on-one sympathetic detonation of 155 mm charge filled with PBXN-109. Both unbuffered and buffered SD configurations are performed while changing the distance between each charge, in order to investigate the detonation sensitivity to a donor initiation. The cause of a SD is by a shock impact for the unbuffered case at a close range, while at a distant range, blast fragment penetration is the primary cause. The buffers can reduce the incident sensitivity to a SD by reducing the strengths of shock wave and impinging fragments.

A Study on Shock-induced Detonation in Gap Test (충격 전달에 의한 Gap Test의 폭굉 반응 해석)

  • Kim, Bohoon;Kang, Wonkyu;Jang, Seung-gyo;Park, Jungsu;Yoh, Jai-ick
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.2
    • /
    • pp.75-85
    • /
    • 2016
  • A pyrotechnic system consisting of donor/acceptor pair separated by a gap relies on shock attenuation characteristics of the gap material and shock sensitivity of the donor and acceptor charges. Despite of its common use, numerical study of such pyrotechnic train configuration is seldom reported because proper modeling of the full process requires precise capturing of the shock wave attenuation in the gap prior to triggering a full detonation of high explosive and accurate description of the high strain rate dynamics of the explosively loaded inert confinements. We apply a Eulerian level-set based multimaterial hydrocode with reactive flow models for pentolite donor and heavily aluminized RDX as acceptor charge. The complex shock interaction, critical gap thickness, acoustic impedance, and go/no-go characteristics of the gap test are quantitatively investigated.