• Title/Summary/Keyword: 하이드로다이나믹 해석

Search Result 4, Processing Time 0.018 seconds

A Full Scale Hydrodynamic Simulation of High Explosion Performance for Pyrotechnic Device (파이로테크닉 장치의 고폭 폭발성능 정밀 하이드로다이나믹 해석)

  • Kim, Bohoon;Yoh, Jai-ick
    • Journal of the Korea Society for Simulation
    • /
    • v.28 no.2
    • /
    • pp.1-14
    • /
    • 2019
  • A full scale hydrodynamic simulation that requires an accurate reproduction of shock-induced detonation was conducted for design of an energetic component system. A detailed hydrodynamic analysis SW was developed to validate the reactive flow model for predicting the shock propagation in a train configuration and to quantify the shock sensitivity of the energetic materials. The pyrotechnic device is composed of four main components, namely a donor unit (HNS+HMX), a bulkhead (STS), an acceptor explosive (RDX), and a propellant (BPN) for gas generation. The pressurized gases generated from the burning propellant were purged into a 10 cc release chamber for study of the inherent oscillatory flow induced by the interferences between shock and rarefaction waves. The pressure fluctuations measured from experiment and calculation were investigated to further validate the peculiar peak at specific characteristic frequency (${\omega}_c=8.3kHz$). In this paper, a step-by-step numerical description of detonation of high explosive components, deflagration of propellant component, and deformation of metal component is given in order to facilitate the proper implementation of the outlined formulation into a shock physics code for a full scale hydrodynamic simulation of the energetic component system.

Analysis on Shock Attenuation of STS Bulkhead Initiator (STS 격벽착화기의 충격파 감쇠 특성 해석)

  • Kim, Bohoon;Jang, Seung-gyo;Yoh, Jai-ick
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.440-444
    • /
    • 2017
  • Two-dimensional hydrodynamic analysis was performed to analyze the attenuating characteristics of shock waves generated by the detonation of the bulkhead initiator. Through the interlocking analysis between HNS and HMX stacking initiator and STS bulkhead, we have precisely simulated detonation growth and pressure wave attenuation phenomena. The free surface velocity at the surface of the bulkhead was measured for quantitative comparison with the test data by VISAR. As a result, it was confirmed that the pressure attenuating pattern of the shock wave exponentially decreased according to the bulkhead thickness. The observed inflection point at the particle velocity measured over time is due to the subsequent propagation of the shock wave due to the rapid spallation of the interface between the detonator and the bulkhead.

  • PDF

A Parametric Study of Constitutive Relations for PETN Based Explosive (PETN 기반 복합화약의 구성방정식 파라미터 결정 및 검증)

  • Baek, Donghyeon;Kim, Bohoon;Yoh, Jai-ick
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.462-468
    • /
    • 2017
  • KYP model is a pressure-based chemical kinetics that describes shock to detonation transition of energetic materials. In this research, the parameters of KYP model and JWL EOS for PETN-based explosive, namely PBXN-301, were determined. A series of unconfined rate stick tests and two dimensional hydrodynamic simulation were conducted to obtain the size effect behaviour of the explosive. As a result, it was confirmed that the parameters obtained from KYP modeling have more accuracy to predict the detonation velocities according to the inverse radius of PBXN-301 than the qualitatively obtained LLNL constitutive equations.

  • PDF

Hydrodynamic Analysis on Shock-induced Detonation in Pyrotechnic Initiator (파이로테크닉 착화기의 충격파 전달에 의한 폭굉 반응 해석)

  • Kim, Bohoon;Kang, Wonkyu;Jang, Seung-gyo;Yoh, Jai-ick
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.5
    • /
    • pp.19-30
    • /
    • 2016
  • We presented a hydrodynamic modeling necessary to accurately reproduce shock-induced detonation of pyrotechnic initiator. The methodology for such numerical prediction of shock propagation is quite straight forward if the models are properly implemented and solved in a well-formulated shock physics code. A series of SSGT(Small Scale Gap Test) and detailed hydrodynamic simulation are conducted to quantify the shock sensitivity of an acceptor that contains 97.5% RDX. A TBI(Through Bulkhead Initiator) system, consisting of a train configuration of Donor(HNS+HMX) - Bulkhead(STS) - Acceptor(RDX), were investigated to further validate the interaction between energetic and non-reactive materials for predicting the detonating response for successful operation of such small pyro device.