• Title/Summary/Keyword: 하수처리장

Search Result 765, Processing Time 0.036 seconds

Evaluation of the impact of sewage treatment plants in the Linked treatment through the sewage treatment computer simulation program (하수처리 전산모사 프로그램을 통한 연계처리시 하수처리장 영향 평가)

  • Kim, Sungji;Gil, Kyungik
    • Journal of Wetlands Research
    • /
    • v.22 no.4
    • /
    • pp.321-327
    • /
    • 2020
  • Recently The amount of wastewater and linked wastewater is being increased every year due to industrial development, population growth, and improvement in living standards. Linked wastewater shows the feature-low flow rate and high concentration. Therefore, it has been shown that it has a great impact on the operation of the sewage treatment plant and costs a lot for treating linked wastewater. In this study, a scenario with low increase of water quality when the total amount of the inflow of linked wastewater was entered into individual reactors is obtained. According to the result of modeling, The effluent water quality get the least increment once the water was introduced into the influent and anoxic tank. We generated the various scenarios Based on these results. scenarios are varying according to inflow from linked waste water's distribution ration. As a result of modeling through various scenarios, it was found that the increment of TN and TP were at the least when the inflow of linked water was distributed with ratio between sewage (80%) and oxygen-free tank (20%).

Analysis on Load of Non-point Source from Sewage Treatment Districts in Nakdong River (낙동강 유역 내 하수처리구역의 비점 배출 부하량 분석)

  • Shin, Hyun Suk;Kim, Mi Eun;Kim, Jae Moon;Jang, Jong Kyung
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.9
    • /
    • pp.695-709
    • /
    • 2015
  • The inflow of nonpoint pollution sources due to sustainable development and urbanization is gradually increasing and causes a diversity of water pollution. There are lots of difficulties to find a solution as the problems related to variation of hydrological and natural phenomenon. A differentiated method to estimate the nonpoint pollution sources has been proposed using rainfall and characteristics of urbanization and observed data from sewage treatment districts in the study. The types of nonpoint pollution sources on an assumption of combined sewer system have been classified as three types which are inflow of rainfall, bypass of sewage treatments, and combined sewer overflows from a river. Three types for estimation of nonpoint pollution sources applied more accurately to generate a amount of nonpoint pollution loads. This study is expecting a wide application for effective water resource management on TMDL (total maximum delivery load) unit watershed and sewage treatment districts.

Optimization of Operating Conditions for Each Linked Treatment Scenario using Sewage Treatment Modeling (하수처리 모델링을 이용한 연계처리 시나리오별 운전조건 최적화)

  • Kim, Sungji;Gil, Kyungik
    • Journal of Wetlands Research
    • /
    • v.23 no.1
    • /
    • pp.7-13
    • /
    • 2021
  • Due to rapid industrial development, population growth, and improvement of living standards, the amount of sewage and wastewater, including nutrients, is increasing every year. In addition to the increasing amount of sewage and wastewater generation, untreated linked treated water (manure, livestock manure, industrial wastewater, leachate, food waste) is also increasing, and many of the linked treated water flows directly into nearby sewage treatment plants. The associated treated water causes many problems because of its own characteristics, low flow rate with high concentration compared to existing inflow sewage. In order to solve this problem, it is necessary to investigate the quantity and quality of the connected treated water whichh is flowed into the sewage treatment plant, and a study the effect on sewage treatment. Therefore, in this paper, we would like to examine the effect of the linked treated water. Seasonal effect associated with water pollution conditions was considered. In addition, a scenario was created through the distribution and inflow of connected treated water along with the water temperature conditions. Through scenario analysis, we intend to optimize the operating conditions of linked processing.

The Quality Diffusion Study Of Coast in Incheon by Using MIKE 21 (MIKE 21 모형을 이용한 인천연안의 수질 확산 모의에 관한 연구)

  • Choi, Gye-Woon;Lee, Ho-Sun;Lee, Seung-Woo;Kwon, Yong-Hyun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.565-570
    • /
    • 2007
  • 최근 들어 인천지역의 개발사업으로 인해 인천연안으로 방류되는 오염물질의 농도가 점점 악화되고 있는 실정이다. 특히, 하수종말처리장 방류수에 의한 인근해안의 영향분석은 중요한 문제 중에 하나라고 할 수 있다. 따라서 본 연구에서는 MIKE21 모형을 이용하여 경기만의 조석전파특성 및 대상지역의 유동상황을 재현하기 위해 하수처리장 증설 지역을 중심으로 경기만 전체를 포함하여 유동해석을 수행하였으며 전체 지역에 대한 유동해석 후 확보한 조석자료를 활용하여 하수처리장 인근지역에 대한 오염물질의 확산 영향에 대해 모의하고 확산방지를 위한 대안을 설정하여 분석을 수행하였다.

  • PDF

하수관거정비 개선 BTL방식으로 가속화된다

  • Korea Environmental Preservation Association
    • Bulletin of Korea Environmental Preservation Association
    • /
    • v.28 s.361
    • /
    • pp.6-6
    • /
    • 2006
  • 하수관거는 생활환경의 개선, 공중위생의 향상, 침수의 방지, 공공수역의 수질보전 및 건전한 물순환 등을 유지하기 위하여 반드시 필요한 도시기반시설이다. 우리나라는 도시민의 쾌적하고 안전한 생활을 확보하기 위하여 하수관거를 지속적으로 부설하였지만 '03년말 기준 전국의 보급률이 65.8%에 불과하고, 설치된 관거도 8.6m당 1곳이 불량하고, 하수관 유량의 31%가 침입수여서 하수관거 개선이 시급한 실정이다. 정부에서는 하수관거정비 종합투자계획을 수립ㆍ하수관거 개보수사업을 적극적으로 추진하고 있다. '07년까지 5조 6천억원을 투자하여 하구관거보급률을 75%수준으로 향상시켜 하수처리장 운영효율 제고 및 수계별 목표 수질 달성에 기여 할 것으로 전망하고 있다. 하수관거정비는 시민 및 사회단체의 환경을 향상시키는 반면에 많은 예산과 장기간이 소요되는 사업이다. 그동안 민간자본을 이용하여 하수처리장 건설 등 환경기초시설 설치 등에 활용되어 왔던 BTO 방식에서 탈피하여 BTL(건설-이전-임대)방식을 도입하여 추진하게 된다. 이에 본지에서는 하수관거정비사업의 현황, 향후 추진방향 등에 대하여 자세히 살펴 보고자 한다.

  • PDF

Application of the Proper Air Supply Amount Based on the Influent Water Quality for the Development of Efficient Blower Control Logic in Sewage Treatment Plants (하수처리장의 효율적인 Blower Control Logic 개발을 위한 유입수질 기반 공기공급량 적용 연구)

  • Yeo, Wooseok;Kim, Jong Kyu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.4
    • /
    • pp.493-499
    • /
    • 2022
  • The standards pertaining to the quality of discharged water in sewage treatment plants are strengthening, and accordingly, facilities in sewage treatment plants are being upgraded. In addition, the discharge water quality of sewage treatment plants must be maintained at a high level, and efficient sewage treatment plant operations have thus emerged as a very important issue. For the efficient operation of sewage treatment plants, this study applied a basic blowing amount calculation method based on sewage facilities to evaluate the required oxygen amount and blowing amount according to inflow water quality by logicizing various influencing factors. As a result of calculating the amount of air blown by applying actual April water quality data from sewage treatment plant A to the blower demand calculation developed through this study, it was found that the average amount of air blown was reduced by about 12%. When the blower demand calculation developed here is applied to an actual sewage treatment plant, the amount of air blown can be controlled based on the inflow water quality. This can facilitate the realization of an autonomous control of sewage treatment plants, in contrast to the existing sewage treatment operation method that relies on operational experience of operator. In addition, it is expected that efficient sewage treatment plants can be operated by reducing blowing amounts and power costs, which will contribute to both energy and carbon savings.

Influences of Chinese Cabbage Growth and Soil Salinity to Alternative Irrigation Waters (대체관개 용수에 의한 배추생육 및 토양 염류도에 미치는 영향)

  • Shin, Joung-Du;Park, Sang-Won;Kim, Won-Il;Lee, Jong-Sik;Yun, Sun-Gang;Eom, Ki-Cheol
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.40 no.1
    • /
    • pp.25-30
    • /
    • 2007
  • Objective of this experiment was to investigate the growth effects of Chinese cabbage and soil salinity to alternative irrigation waters for drought periods. The treatments were consisted of the discharge water from industrial wastewater treatment plant (DIWT), the discharge water from municipal wastewater treatment plant (DMWT) and ground water as the control. For the chemical compositions of alternative water, it appeared that concentrations of the $Ni^+$ and SAR values in DIWT were over the reuse criteria of other countries for irrigation, but CODcr concentration in DMWT was higher than the reuse criteria for agricultural irrigation. According to classification of water by $EC_i$ value, DIWT and DMWT are ranged from 0.7 to $2.0dS\;m^{-1}$, slight salinity. Average harvest indexes were 0.64 for DIWT and 0.63 for DMWT as compared to 0.61 of the control regardless of irrigation periods. SAR value in soil was increased with prolonging the irrigation periods at head forming stage, but not much difference except for 30 days of irrigation period at harvesting time for DIWT. However, it was not much difference along with irrigation periods through the growth stages for DMWT as compared with the groundwater. At harvesting time, average $EC_e$ for the soil irrigated with alternative agricultural waters was $0.017dS\;m^{-1}$ for its DIMT and $0.036dS\;m^{-1}$ for its DMWT as compared to $0.013dS\;m^{-1}$ of its groundwater as the control. For $NH_4-N$ concentrations, it observed that there were no differences among the treatments with different irrigation periods at head forming stage in soil after irrigation. Also, $NO_3-N$ concentration in soil was increased up to 20 days after irrigation, and then decreased at 30 days after irrigation with DMWT at head forming stage. The $Ni^+$ concentration in upper layer soil (0-15 cm) irrigated with DIWT was increased with prolonging the irrigation period at head forming stage, but it was dramatically decreased and almost constant in all the treatments at harvesting time. Therefore, it might be concluded that there was potentially safe to irrigate the discharge water from municipal wastewater treatment plant for 20 days after transplanting to drought periods with cultivating the Chinese cabbage.

Effect Analysis of Alternatives to Secure Instream Flow in the Anyangcheon Using HSPF (HSPF를 이용한 안양천의 유지유량 확보 방안에 대한 효과 분석)

  • Lee, Kil-Seong;Lee, Joon-Seok;Chung, Eun-Sung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.1840-1844
    • /
    • 2006
  • 현재 안양천 유역에서는 하천 유지유량 확보 및 건천화 방지를 위해 지하철 용출수, 하수처리장 방류수 및 재이용수가 활용되고 있다. 본 연구에서는 광범위한 유역에 적용이 가능하고, 점오염원 및 비점오염원 분석과 처리 대안의 효과 분석을 실시할 수 있는 HSPF (Hydrological Simulation Program - Fortran) 모형에 대해 민감도 분석을 실시한 후 안양천 중상류 유역에서 현재 활용되고 있는 유지유량 확보 방안에 대한 효과 분석을 수행하였다. 총유출량과 첨두유량에 대한 매개변수 민감도 분석 결과 AGWRC, DEEPFR, INFILT, LZSN, UZSN, IRC, INTFW, LZETP 순으로 민감하게 반응하였으며, 이 중 유출에 1% 이상 변화를 주는 매개변수 AGWRC, DEEPFR, INFILT, LZSN, UZSN, IRC를 모형의 보정 및 검증에 사용하였다. HSPF 모형을 이용하여 2004년 안양천 유역을 모의한 결과 갈수량 기준 시 안양천 중류 유량의 82%가 안양하수처리장에서 방류되는 방류수에 의한 것으로 나타났으며, 하수처리 재이용수와 지하철 용출수는 각각 4.6%와 1.3%의 영향을 보였다. 따라서 안양천 유역과 같은 건천화가 진행되고 있는 도시하천의 경우 지하철 용출수 및 하수처리수 등의 하천 유지유량 확보 방안은 물순환 건전화의 중요한 대안이 될 수 있을 것이다.

  • PDF

마산만의 준설 및 하수처리장 가동에 따른 진해만의 수질변동

  • 이인철;김경희;류청로;김헌태
    • Proceedings of the Korean Society of Fisheries Technology Conference
    • /
    • 2003.05a
    • /
    • pp.160-161
    • /
    • 2003
  • 본 연구는 그림 1의 진해만 관측자료를 수집ㆍ분석하여 1989년부터 1994년까지의 5년간의 마산, 진해만의 수질변동 특성 분석 및 Cluster analysis를 통해 및 개의 유사영역으로 구분하여 소해역별 수질환경 공간특성을 파악해 보고, 마산만 준설 및 마산시 하수처리장이 가동된 시기를 전ㆍ후로 수질의 변화 양상을 검증하여 그 실효성을 평가해 봄으로써 오염물질 유입에 대해 능동적 대처방안을 마련하고 체계적인 해역관리를 할 수 있는 기초자료를 마련하고자 하였다. (중략)

  • PDF

Occurrence of Synthetic Musk Compounds in Surface and Waste Waters in Korea (국내 하천수 및 하수처리장 유입.방류수의 합성머스크화합물 오염실태 조사)

  • Lee, In-Jung;Lee, Chul-Gu;Heo, Seong-Nam;Lee, Jae-Gwan
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.11
    • /
    • pp.821-826
    • /
    • 2011
  • Synthetic musk compounds are widely used as fragrances in a variety of personal care products like soaps, sampoos, cosmetics and perfumes. The occurrence of synthetic musk compounds in municipal sewage effluent and other environmental samples could negatively impact the health of the ecosystem and humans, due to persistent and long-term chronic exposure of aquatic organisms. Fifteen synthetic musk compounds (musk ketone, musk xylene, musk ambrette, musk moskene, musk tibetene, HHCB, AHTN, ADBI, AHDI, DPMI, ATII, ethylenebrasssylate, ambretettolide, cyclopentadecanolide, OTNE) were analysed in surface waters and sewage treatment plants (STP) influents/effluents in Korea by GC/MS. Method detection limits were $0.005{\sim}0.398{\mu}g/L$. HHCB and AHTN were most frequently observed in both surface waters and STP influents/effluents.