• Title/Summary/Keyword: 하모닉 구조

Search Result 75, Processing Time 0.02 seconds

Two Simultaneous Speakers Localization using harmonic structure (하모닉 구조를 이용한 두 명의 동시 발화 화자의 위치 추정)

  • Kim, Hyun-Kyung;Lim, Sung-Kil;Lee, Hyon-Soo
    • Proceedings of the KSPS conference
    • /
    • 2005.11a
    • /
    • pp.121-124
    • /
    • 2005
  • In this paper, we propose a sound localization algorithm for two simultaneous speakers. Because speech is wide-band signal, there are many frequency sub-bands in that two speech sounds are mixed. However, in some sub-bands, one speech sound is more dominant than other sounds. In such sub-bands, dominant speech sounds are little interfered by other speech or noise. In speech sounds, overtones of fundamental frequency have large amplitude, and that are called 'Harmonic structure of speech'. Sub-bands inharmonic structure are more likely dominant. Therefore, the proposed localization algorithm is based on harmonic structure of each speakers. At first, sub-bands that belong to harmonic structure of each speech signal are selected. And then, two speakers are localized using selected sub-bands. The result of simulation shows that localization using selected sub-bands are more efficient and precise than localization methods using all sub-bands.

  • PDF

Durability Study on Structural Strength due to the Shape of Excavator Wheel (굴삭기휠의 형상별 구조 강도에 대한 내구성 연구)

  • Cho, Jaeung;Han, Moonsik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.6
    • /
    • pp.166-174
    • /
    • 2013
  • This study investigates the strength durability on the results of structural and vibration analysis due to the shape of excavator wheel. As model 2 has the least stress by comparing three models with maximum equivalent stress, model 2 has most durability among three models at static analysis. Maximum equivalent stress is shown at the bottom part contacted with ground and this part on wheel is most affected by load in cases of all models. Safety factor can be decided with the value of 2.3 by considering the yield stress of this model. The range of maximum harmonic response frequencies becomes 6900 to 7000Hz. As model 2 has the least total deformation and equivalent stress at these critical frequencies, model 2 has the most durability at vibration analysis among three models. The structural and vibration analysis results in this study can be effectively utilized with the design of excavator wheel by investigating prevention and durability against its damage.

Structural Analysis on Flange Coupling due to Change of Bolt Numbers (볼트 수 변경에 따른 플랜지 커플링에 대한 구조해석)

  • Han, Moonsik;Cho, Jaeung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.5
    • /
    • pp.57-66
    • /
    • 2013
  • This study investigates structural and vibration analyses due to the change of bolt Numbers on models 1 and 2 of flange couplings connected with both sides of axis. As maximum equivalent stresses of models 1 and 2 are 122.05 and 102.3 MPa respectively by the basis of bolt, these stresses are within the allowable stress of this model and the safety of bolt design is verified. As maximum equivalent stresses of models 1 and 2 are 196.2 and 196.4 MPa respectively by the basis of body, these stresses are within the allowable stress of this model and the safety of body design is verified. Through natural frequency analysis, maximum displacements of model 1 and 2 are shown at the frequencies of 6565.1 and 6614.9 Hz respectively. Maximum displacements in cases of models 1 and 2 are shown at harmonic frequencies of 7760 and 7840 Hz at real loading conditions. By putting these study results together, the durability of vibration at model 2 with bolt numbers of 8 becomes better than model 1 with bolt numbers of 6. These study results can be effectively utilized with the design on flange coupling by anticipating and investigating prevention and durability against its damage.

A Very Low-Bit-Rate Analysis-by-Synthesis Speech Coder Using Zinc Function Excitation (Zinc 함수 여기신호를 이용한 분석-합성 구조의 초 저속 음성 부호화기)

  • Seo Sang-Won;Kim Jong-Hak;Lee Chang-Hwan;Jeong Gyu-Hyeok;Lee In-Sung
    • The Journal of the Acoustical Society of Korea
    • /
    • v.25 no.6
    • /
    • pp.282-290
    • /
    • 2006
  • This paper proposes a new Digital Reverberator that models Analog Helical Coil Spring Reverberator for guitar amplifiers. While the conventional digital reverberators are proposed to provide better sound field mainly based on room acoustics, no algorithm or analysis of digital reverberators those model Helical Coil Spring Reverberator was proposed. Considering the fact that approximately $70{\sim}80$ percent of guitar amplifiers are still with Helical Coil Spring Reverberator, research was performed based not on Room Acoustics but on Helical Coil Spring Reverberator itself as an effector. After performing simulations with proposed algorithm, it was confirmed that the Digital Reverberator by proposed algorithm provides perceptually equivalent response to the conventional Analog Helical Coil Spring Reverberators.

A New Structure Frequency Doubler Using Phase Delay Line (위상 지연 선로를 이용한 새로운 구조의 주파수 2체배기)

  • Cho, Seung-Yong;Lee, Kyoung-Hak;Kim, Yong-Hwan;Do, Ji-Hoon;Lee, Hyung-Kyu;Hong, Ui-Seok
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.2A
    • /
    • pp.213-219
    • /
    • 2007
  • In this paper, A novel structure of frequency doubler using Phase Delay line and $90^{\circ}$ Hybrid coupler at harmonic output have been designed and implemented to improve suppression. Proposed structure of frequency doubler improve output. coupling and fundamental suppression. Active frequency doubler with band from $2.13{\sim}2.15GHz\;to\;4.26{\sim}4.3GHz$ was designed and fabricated with 10dBm input power, 0.79dB conversion gain and -55.54dBc suppression at fundamental frequency, -44.76dBc suppression at third harmonic frequency 6.42GHz and -39.18dBc suppression at fourth harmonic frequency 8.56GHz.

Sleeper Spacing Optimization for Vibration Reduction in Rails (철로의 진동제어를 위한 침목 간격 최적설계)

  • Batjargal, Sodbilig;Abe, Kazuhisa;Koro, Kazuhiro
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.6
    • /
    • pp.569-577
    • /
    • 2012
  • In this study, a theoretical investigation of optimized sleeper spacing which can suppress resonances of a railway track is attempted. To achieve this, we introduced a minimization problem in which the objective function is given by the wave transmittance and the design variable is defined by sleeper distribution. In the analysis the rail is modeled by a Timoshenko beam and the sleeper is represented by a mass. The infinite track analysis is realized by attaching the transmitting boundaries at both ends of the finite optimization region. Through numerical analyses the sleeper spacing effective in reduction of the transmittance is discussed. Furthermore, the feasibility of the proposed method is validated in the aspect of vibration reduction through response analyses for a harmonic load.

Analysis of Microstrip Bandstop Filter Based on the Photonic Bandgap(PBG) Structure Using FDTD (FDTD를 이용한 PBG 구조를 갖는 마이크로스트립 대역저지 여파기에 관한 분석)

  • Ho, Jin-Key;Yun, Young-Seol;Park, Sang-Hyun;Choi, Young-Wan;Kim, Hyeong-Seok;Kim, Ho-Seong
    • Journal of The Institute of Information and Telecommunication Facilities Engineering
    • /
    • v.2 no.1
    • /
    • pp.52-62
    • /
    • 2003
  • In this paper, photonic bandgap(PBG) bandstop filters which are composed of periodically etched circles in the ground plane show good microwave characteristics with the harmonic suppression on stopband. The PBG structures were analyzed using a finite-difference time-domain(FDTD) simulation and experimental measurement. The FDTD technique is used because it can simulate arbitrary 3-D structures and provide broadband frequency response. The analysis results are presented it is the same that only one row of etched circles and 2-dimension three rows of etched circles. And we show the PBG resonator characteristics between etched circles using field pattern and frequency characteristics as functions of etched circle number n, etched circle radius r and period a.

  • PDF

Evolutionary PSR Estimation Algorithm for Feature Extraction of Sonar Target (소나 표적의 특징정보추출을 위한 진화적 PSR 추정 알고리즘)

  • Kim, Hyun-Sik
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.5
    • /
    • pp.632-637
    • /
    • 2008
  • In real system application, the propeller shaft rate (PSR) estimation algorithm for the feature extraction of the sonar target operates with the following problems: it requires both accurate and efficient the fundamental finding method because it is essential and difficult to distinguish harmonic family composed of the fundamental and its harmonics from the multiple spectral lines in the frequency spectrum-based sonar target classification, and further, it requires an easy design procedure in terms of its structures and parameters. To solve these problems, an evolutionary PSR estimation algorithm using an expert knowledge and the evolution strategy, is proposed. To verify the performance of the proposed algorithm, a sonar target PSR estimation is performed. Simulation results show that the proposed algorithm effectively solves the problems in the realtime system application.

Structural Analysis of Engine Mounting Bracket (엔진 마운팅 브라켓의 구조해석)

  • Han, Moon-Sik;Cho, Jae-Ung
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.4
    • /
    • pp.525-531
    • /
    • 2012
  • This study aims at the structural analysis of vibration and fatigue according to the configuration of engine mount. Maximum equivalent stress or deformation is shown at bracket or case respectively. As harmonic vibration analysis, the maximum displacement amplitude is happened at 4,000Hz. Among the cases of nonuniform fatigue loads, 'SAE bracket history' with the severest change of load becomes most unstable but 'Sample history' or 'Saw tooth' becomes most stable. In case of 'Sample history' or 'Saw tooth' with the average stress of 4,200MPa or 0MPa and the amplitude stress of -3,000MPa or 7MPa, the possibility of maximum damage becomes 70%. This stress state can be shown with 7 times more than the damage possibility of 'SAE bracket history' or 'SAE transmission'. The structural result of this study can be effectively utilized with the design on engine mount by investigating prevention and durability against its damage.

Durability Analysis due to the Shape Change of Universal Joint (유니버셜 조인트의 형상 변화에 따른 내구성 해석)

  • Han, Moonsik;Cho, Jaeung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.4
    • /
    • pp.69-74
    • /
    • 2013
  • According to the axial torsion applied at power transmission and the vibration from the roughness of road surface, this paper analyzes the stresses on two kinds of universal joint model. As stress and deformation at model 2 becomes smaller than model 1 on structural analysis, model 2 is more stabilized than model 1. The natural frequencies at model 1 and 2 are 7,040 and 9,540 Hz respectively. As the natural frequency range of model 2 becomes higher than model 1, model 2 becomes safer than model 1. Critical frequencies at these models are calculated through harmonic response analyses. On critical frequencies at model 1 and 2, the stress at model 2 becomes lower than 2 times as much as model 1 and the deformation at model 2 becomes lower than 4 times as much as model 1. Model 2 on durability is thought to become better than model 1. This study result is applied with the design of safe universal joint and it can be useful to improve the durability by predicting prevention against the deformation due to its vibration.