• Title/Summary/Keyword: 하구

Search Result 1,632, Processing Time 0.022 seconds

Wind and Flooding Damages of Rice Plants in Korea (한국의 도작과 풍수해)

  • 강양순
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.34 no.s02
    • /
    • pp.45-65
    • /
    • 1989
  • The Korean peninsular having the complexity of the photography and variability of climate is located within passing area of a lots of typhoon occurring from the southern islands of Philippines. So, there are various patterns of wind and flooding damages in paddy field occuring by the strong wind and the heavy rain concentrated during the summer season of rice growing period in Korea. The wind damages to rice plants in Korea were mainly caused by saline wind, dry wind and strong wind when typhoon occurred. The saline wind damage having symptom of white head or dried leaves occurred by 1.1 to 17.2 mg of salt per dry weight stuck on the plant which was located at 2. 5km away from seashore of southern coastal area during the period(from 27th to 29th, August, 1986) of typhoon &Vera& accompanying 62-96% of relative humidity, more than 6 m per second of wind velocity and 22.5 to 26.4$^{\circ}C$ of air temperature without rain. Most of the typhoons accompanying 4.0 to 8. 5m per second of wind and low humidity (lesp an 60%) with high temperature in the east coastal area and southen area of Korea. were changed to dry and hot wind by the foehn phenomenon. The dry wind damages with the symptom of the white head or the discolored brownish grain occurred at the rice heading stage. The strong wind caused the severe damages such as the broken leaves, cut-leaves and dried leaves before heading stage, lodging and shattering of grain at ripening stage mechanically during typhoon. To reduce the wind damages to rice plant, cultivation of resistant varieties to wind damages such as Sangpoongbyeo and Cheongcheongbyeo and the escape of heading stage during period of typhoon by accelerating of heading within 15th, August are effective. Though the flood disasters to rice plant such as earring away of field, burying of field, submerging and lodging damage are getting low by the construction of dam for multiple purpose and river bank, they are occasionally occurred by the regional heavy rain and water filled out in bank around the river. Paddy field were submerged for 2 to 4 days when typhoon and heavy rain occurred about the end of August. At this time, the rice plants that was in younger growing stage in the late transplanting field of southern area of Korea had the severe damages. Although panicles of rice plant which was in the meiotic growing stage and heading stage were died when flooded, they had 66% of yield compensating ability by the upper tilling panicle produced from tiller with dead panicle in ordinary transplanting paddy field. It is effective for reduction of flooding damages to cultivate the resistant variety to flooding having the resistance to bacterial leaf blight, lodging and small brown planthopper simultaneously. Especially, Tongil type rice varieties are relatively resistant to flooding, compared to Japonica rice varieties. Tongil type rice varieties had high survivals, low elongation ability of leaf sheath and blade, high recovering ability by the high root activity and photosynthesis and high yield compensating ability by the upper tillering panicle when flooded. To minimize the flooding and wind damage to rice plants in future, following research have to be carried out; 1. Data analysis by telemetering and computerization of climate, actual conditions and growing diagnosis of crops damaged by disasters. 2. Development of tolerant varieties to poor natural conditions related to flooding and wind damages. 3. Improvement of the reasonable cropping system by introduction of other crops compensating the loss of the damaged rice. 4. Increament of utilization of rice plant which was damaged.

  • PDF

Studies on the Life History of Bacciger harengulae (Bacciger harengulae의 생활사에 관한 연구)

  • KIM Young-Gill;CHUN Seh-Kyu
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.17 no.5
    • /
    • pp.449-470
    • /
    • 1984
  • The cercaria of Bacciger herengulae which is parasitized on the gonad of Solen strictus was investigated in order to reveal its entire life history. The area covered for the study was in the vicinity sea of Naechodo, the estuary of the Kum river in the western coast of Korea during the period of 1980-1983. Morphology and development as well as infection rates of sporocyst and cercaria within Solen strictus were examined. For accomplishing the objectives of this study, an artificial infection experiment and some investigations on the second intermediate host, the final host and the growing stages were also studied in both laboratory and natural habitat of Solen strictus. According to the study, it was revealed that the first intermediate hosts were Meretrix lusoria, Solen strictus, Tapes japonica and Laternula limicola, the second intermediate host was Palaemon (Exopalaemon) carinicauda and the final hosts were Konosirus punctatus and Harengula zunasi. A mature sporocyst which was found in the gonad of Solen strictus was $4.0-4.3{\times}0.2-0.21\;mm$ insize, and the cercaia with 27 pairs of setae, each seta consisting of 6 tufts, was $270{\times}147{\mu}m$ in body size and $550{\times}52{\mu}m$ in tail size. Oral sucker($52{\times}42{\mu}m$), pharynx, vental sucker and two testese were obviously seen within the cercaria. The excretory vesicles of cercaria were in V-shape and the flame cell were formula was expressed as 2[(3+3)+(3+3)]=24. The infection of cercaria in the first intermediate host, Solen strictus, was found throughout the year regardlless of the water temperature, and its mean infection rate was $9.67\%$ during the study period. The infection rate fluctuated with temperature, the highest being $28.0\%\;at\;28.0^{\circ}C$ water temperature in July and the lowest $2.4\%\;at\;19.5^{\circ}C$ in October, and it increased in proportion to the shell length on the host. But cercaria was not detected at below 4.0 cm in size of the host. Mature cercariae were found 6 months from May to October when water temperature was above $19.5^{\circ}C$. On the other hand, when water temperature was below $19.5^{\circ}C$, only immature cercariae and sporocysts were found. The cercariae were active for 35 hours and survived for 71 hours at $20^{\circ}C$, and 29 and 34 hours at $25^{\circ}C$ respectively, whereas the cercariae were inactive at less than $20^{\circ}C$ in water temperature. Cercaria, from Solen strictus, approached shrimp of 1-3 cm in body length as its second host. Then, it began to intrude in to the muscle of shrimp after 2-3 hours. The infected cercaria formed cyst after 7-8 hours, and became mature metacercaria. $420{\times}310{\mu}m$ in size, 15 days afer infection. The infection rate of metaceria to shrimp in the laboratory was highest, at $25^{\circ}C$ being $61\%$ and at $20^{\circ}C\;17%$. The infection rate of metacearia in shrimp was highest in the first abdominal segment, followed by cephalothorax, the second, and fifth abdominal segments, and in that order. Also, the infection rate of metacercaria in wild shrimp was high $9.6-11.1\%$ at $26.5^{\circ}C$ in June, and low $1.56-2.5\%$ at $28-29.5^{\circ}C$ from July to August. The infected shrimp with metacercaria was experimentally fed to Konosirus punctatus in the laboratory in order to know its final host. The metacercaria developed into the adult worm, $440-520{\times}310-360{\mu}m$ in size, within the intestine of Konosirus punctatus 20 days after infection. The adult worm was oval shape and $20-24{\times}11-20{\mu}m$ in size. The infection rate of adult worm to Konosirus punctatus and Harengula zunasi ranged 87.3 to $100\%$, the mean being $95.2\%$, regardless of the body length of their hosts. The infection rate was $100\%$ in June and July, but it decreased in September and October. The size and body structure of the trematode observed during the present study were well agreed with those ievestigated by Yamaguti(1938), thus, it may be concluded that the adult worm it identified as Bacciger harengulae.

  • PDF