• Title/Summary/Keyword: 하강퇴적물

Search Result 32, Processing Time 0.017 seconds

Typhoon Induced Changes of the Phytoplankton at Bok-gyo Bridge Area in Juam Lake (태풍에 의한 주암호복교지점의 식물플랑크톤 변화)

  • Cho, Ki An;Lee, Hak Young
    • Korean Journal of Ecology and Environment
    • /
    • v.51 no.4
    • /
    • pp.253-258
    • /
    • 2018
  • Phytoplankton community was studied in relation to a typhoon at Bok-gyo Bridge area in Juam Lake, Korea. In August 31, 2000, a typhoon (Prapiroon) was passed by Juam Lake with great power enough to destroy summer stratification of Juam Lake. Destratification resulted in temporal mixing of the whole water column and changed the physical and chemical properties of water bodies, and caused the changes of the biological properties. The transparency decreased from 195 cm before the typhoon to 84 cm after the typhoon with the resuspension of the bottom sediment. In the vertical distribution of the phytoplankton population, the maximum population was measured at depth of 2 m before the typhoon. However, immediately after the typhoon, the population distributed evenly throughout the entire water layers. The carbon biomass of the phytoplankton was also highest at the depth of 2 m before the typhoon, but immediately after the typhoon, it was uniformly distributed throughout the whole water layers. The vertical profiles of the concentrations of chlorophyll a, however, did not show a significant difference before and after the typhoon. The typhoon induced destratification and restratification altered the taxa of the phytoplankton. The major dominant phytoplankton taxa before the typhoon was diatoms including Aulacoseira granulata, but the green algae overwhelmed the diatoms in cell number and biomass after the typhoon. The chlorophycean dominance was replaced by cyanophycean dominance with the heavy rain and descent of water temperture at the end of September.

Spatial Distribution and Successional Changes of Riparian Vegetation on Sandbars Exposed after Watergate-Opening of Weirs in the Geumgang River, South Korea (보 개방 후 노출된 금강 모래톱에서 하천 식생의 공간 분포와 천이)

  • Lee, Cheolho;Kim, Hwirae;Cho, Kang-Hyun
    • Ecology and Resilient Infrastructure
    • /
    • v.9 no.3
    • /
    • pp.194-205
    • /
    • 2022
  • Sandbars formed by sediment transportation and sedimentation are some of the most important habitats for specific wildlife and they provide an aesthetic landscape in streams. The purpose of this study was to understand the successional process of the colonization and development of early vegetation over time on sandbars exposed by the opening of a gate at a downstream weir. We selected the following four study sites in the Geumgang River, South Korea: three weir-upstream sites with different gate-opening times and a control site that was not affected by weir operation. Changes in the structural characteristics and spatial distribution of the riparian vegetation on the sandbars exposed after opening the gate at the weir were surveyed according to the different exposure periods of the sandbars at the study sites. The newly formed sandbars accounted for more than 33% of the area of the existing floodplain in the three weir-upstream sites of the Geumgang River after opening the gate at the weir. Nine main plant communities were distributed on the exposed sandbars. These communities were classified as annual mesophytic, perennial hydrophytic, perennial hygrophytic, subtree, and tree vegetation based on their species traits. As the duration of exposure of the sandbar increased, the area of the bare sandbar and the annual herbaceous and perennial hydrophytic communities decreased, and the areas occupied by perennial hygrophytic, subtree, and tree communities increased. Changes in vegetation on the sandbar were classified into three types of succession according to the condition of the aquatic habitat before the gate-opening and the degree of physical disturbance caused by the water flow after the gate-opening. The types of succession were: 1) succession starting from hydrophytes in the lentic aquatic zone, 2) succession starting from annual herbaceous hygrophytes in the lotic aquatic zone, and 3) willow-dominated succession in the disturbed channel side. Our results suggested that the dynamics of successional changes in vegetation should be considered during weir operation to ecologically manage the habitats and landscape of the fluvial landforms, including sandbars in streams.