• 제목/요약/키워드: 필터링 알고리즘

검색결과 856건 처리시간 0.023초

무인항공기 영상과 딥러닝 기반의 의미론적 분할 기법을 활용한 야적퇴비 탐지 연구 (A Study on Field Compost Detection by Using Unmanned AerialVehicle Image and Semantic Segmentation Technique based Deep Learning)

  • 김나경;박미소;정민지;황도현;윤홍주
    • 대한원격탐사학회지
    • /
    • 제37권3호
    • /
    • pp.367-378
    • /
    • 2021
  • 야적퇴비는 대표적인 축산계 비점오염원으로 강우로 인해 수계로 유입될 경우 야적퇴비에 포함된 인과 질소 등의 영양염류가 하천 수질에 악영향을 미칠 수 있다. 이에 본 논문에서는 무인항공기 영상과 딥러닝 기반의 의미론적 분할 기법을 활용한 야적퇴비 탐지 방법을 제안한다. 연구지역에서 취득한 39개의 정사영상을 토대로 Data Augmentation을 통해 약 30,000개의 데이터를 확보하였다. 취득한 데이터를 U-net을 기반으로 개발된 의미론적 분할 알고리즘에 적용시킨 후 OpenCV의 필터링 기법을 적용하여 정확도를 평가하였다. 정확도 평가 결과 화소정확도는 99.97%, 정밀도는 83.80%, 재현율은 60.95%, F1- Score는 70.57%의 정확도를 보였다. 정밀도에 비해 재현율이 떨어지는 것은 정성적으로 보았을 때 전체 이미지에서 가장자리에 작은 비율로 야적퇴비 픽셀이 존재하는 경우 과소추정되었기 때문이다. 향후 추가적인 데이터셋과 RGB 밴드 이외의 추가 밴드를 조합한다면 모델 정확도를 향상시킬 수 있을 것으로 판단된다.

조선소 작업자를 위한 스마트 안전모의 커넥티비티 검증 및 소음저감 분석 (Connectivity Verification and Noise Reduction Analysis of Smart Safety Helmet for Shipyard Worker)

  • 박준혁;허준영;이상복;박재문;박준수;이광국
    • 융합신호처리학회논문지
    • /
    • 제23권1호
    • /
    • pp.28-36
    • /
    • 2022
  • 현재 조선산업 현장의 자동화, 지능화가 가능해져 작업 생산능력과 비용 경쟁력은 향상되었으나, 산업현장 작업자들의 안전사고 감소율은 여전히 저조한 편이며 안전사고로 인한 피해는 매우 심각하므로 현장에 맞게 개선의 필요성이 존재한다. 본 연구에서는 조선소의 작업자 보호 및 환경 안전을 위한 스마트 안전모의 개발과 함께 효용성을 검증하기 위해 실증 구역에서 스마트 안전모 간의 커넥티비티 실증을 목표로 한다. 또한, 작업자 보호 및 안전을 위해 스마트 안전모 착용자 간의 다대다 LTE 통신을 구현하고, 조선소 작업장에서 테스트한 결과를 분석하였다. 작업자 간의 원활한 통신을 위해 작업장에서 발생하는 95dB 이상의 충격 소음을 확인하였고, 이를 개선하기 위해 Butterworth, Chevbychev, elliptic 알고리즘으로 필터링 성능을 비교 분석하였다. 본 연구에서 제안한 스마트 안전모 간의 커넥티비티 테스트와 소음저감 방법은 향후 조선산업의 현장 맞춤형 스마트 안전모 고도화 개발로 활용성 및 현장의 안전성을 증대시켜줄 것이다.

DTW-kNN 기반의 유망 기술 식별을 위한 의사결정 지원 시스템 구현 방안 (Implementation of DTW-kNN-based Decision Support System for Discriminating Emerging Technologies)

  • 정도헌;박주연
    • 산업융합연구
    • /
    • 제20권8호
    • /
    • pp.77-84
    • /
    • 2022
  • 본 연구는 기계 학습 기반의 자동 분류 기법을 적용함으로써 유망 기술의 선정 과정에 활용할 수 있는 의사결정 지원 시스템의 구현 방안을 제시하는 것을 목표로 한다. 연구 수행을 위해 전체 시스템의 아키텍처를 구축하고 세부 연구 단계를 진행하였다. 우선, 유망 기술 후보 아이템을 선정하고 빅데이터 시스템을 활용하여 추세 데이터를 자동 생성하였다. 기술 발전의 개념 모델과 패턴 분류 체계를 정의한 후 자동 분류 실험을 통해 효율적인 기계 학습 방안을 제시하였다. 마지막으로 시스템의 분석 결과를 해석하고 활용 방안을 도출하고자 하였다. 본 연구에서 제안한 동적 시간 와핑(DTW) 기법과 k-최근접 이웃(kNN) 분류 모델을 결합한 DTW-kNN 기반의 분류 실험에서 최대 87.7%의 식별 성능을 보여주었으며, 특히 추세의 변동이 심한 'eventual' 정의 구간에서는 유클리디언 거리(ED) 알고리즘 대비 39.4% 포인트의 최대 성능 차이를 보여주어 제안 모델의 우수함을 확인할 수 있었다. 또한, 시스템이 제시하는 분석 결과를 통해, 대량의 추세 데이터를 입력받아 유형별로 자동 분류하고 필터링하는 과정에 본 의사결정 지원 시스템을 효과적으로 활용할 수 있음을 확인하였다.

뇌 MR 영상에서 종양의 검출과 분할 (Detection and Segmentation of Tumors in Brain MR Images)

  • 이훈재
    • 한국방사선학회논문지
    • /
    • 제18권6호
    • /
    • pp.691-698
    • /
    • 2024
  • 뇌종양은 유전적, 환경적, 면역학적, 생화학적 요인을 포함한 다양한 복합적인 요인에서 발생한다. 뇌종양은 원발성과 전이성으로 분류되며, 이들은 발생 원인과 위치에서 차이를 보인다. 뇌종양은 삶의 질에 상당한 영향을 미치며, 종양의 크기와 위치에 따라 두통, 발작, 인지 기능 저하, 운동 기능 장애와 같은 증상이 나타날 수 있다. 뇌종양의 조기 진단은 삶의 질을 향상시키는 데 매우 중요하다. 적시의 발견은 신속한 치료를 가능하게 하여 종양의 성장과 증상의 악화를 예방할 수 있다. 진단 과정은 일반적으로 신경학적 검사, 영상 검사, 조직 검사, 혈액 검사를 포함한다. 특히, MRI는 뇌의 상세한 구조를 고해상도로 제공하여 종양의 위치, 크기, 형태 및 주변 조직을 명확하게 나타낸다. 본 연구에서는 MRI 영상에서 뇌종양을 탐지하고 분할하는 방법을 제안하며, 이를 위해 "BrainTumors_1.0.zip"이라는 이름의 데이터 세트를 구축하였다. 실험 결과는 입력 영상을 필터링함으로써 이미지 품질을 향상시키고 정확한 종양 탐지를 가능하게 함을 보여주었다. 향후 연구는 알고리즘의 일반화, 데이터 세트의 다양화, 자동화된 방법론 개발, 그리고 임상적 유용성을 평가하여 뇌종양 진단과 치료를 위한 도구로 확립하는 것이다.

컬러 보간 에러 감소를 위한 에지 방향성 컬러 보간 방법과 결합된 디블러링 알고리즘 (A Deblurring Algorithm Combined with Edge Directional Color Demosaicing for Reducing Interpolation Artifacts)

  • 유두식;송기선;강문기
    • 전자공학회논문지
    • /
    • 제50권7호
    • /
    • pp.205-215
    • /
    • 2013
  • 디지털 이미징 장치는 일반적으로 베이어 패턴(Bayer pattern)을 사용하며, 영상 획득 과정에서 광학적 블러(blur)에 의해 영상의 품질이 손상된다. 블러된 베이어 영상에서 고해상도 컬러 영상을 얻기 위하여, 일반적으로 컬러 보간 방법과 디블러링 방법을 독립적으로 수행한다. 하지만, 베이어 샘플링에 의한 에지 정보가 불충분하여 에지를 가로지르는 방향으로 보간 하게 되고, 이에 따라 컬러 보간 과정에서 에러가 발생한다. 이러한 에러는 디블러링 과정에서 강조되어 영상의 품질을 하락시킨다. 따라서 본 논문은 컬러 보간 방법과 결합된 디블러링 알고리즘을 제안한다. 제안하는 방법은 크게 보간 단계와 영역 결정 단계로 나눌 수 있다. 보간 단계에서는 가정된 에지 방향에 따라 보간 및 디블러링 과정을 수행하고, 영역 결정 단계에서는 각 화소 위치에서 국부 영역의 특성을 추정하고, 보간 단계에서 구한 값을 영역 적응적으로 융합한다. 또한 본 논문에서는 디블러링 성능을 향상시키기 위하여 광학적 블러와 유사한 파동 광학에 근거한 블러 모델을 기반으로 하고, 추정한 국부 영역 특성을 반영하여 디블러링 필터를 추정한다. 실험 결과를 통해 제안하는 방법이 컬러 보간 에러가 확대되는 것을 방지함을 확인할 수 있으며, 기존 방법에 비해 수치적인 면과 시각적인 면에서 뛰어난 결과를 보임을 확인 할 수 있다.

형태학적 연산과 경계추출 학습이 강화된 U-Net을 활용한 Sentinel-1 영상 기반 수체탐지 (Water Segmentation Based on Morphologic and Edge-enhanced U-Net Using Sentinel-1 SAR Images)

  • 김휘송;김덕진;김준우
    • 대한원격탐사학회지
    • /
    • 제38권5_2호
    • /
    • pp.793-810
    • /
    • 2022
  • 실시간 범람 모니터링을 위해 인공위성 SAR영상을 활용하는 수체탐지에 대한 필요성이 대두되었다. 주야와 기상에 상관없이 주기적으로 촬영 가능한 인공위성 SAR 영상은 육지와 물의 영상학적 특징이 달라 수체탐지에 적합하나, 스페클 노이즈와 영상별 상이한 밝기 값 등의 한계를 내포하여 다양한 시기에 촬영된 영상에 일괄적으로 적용 가능한 수체탐지 알고리즘 개발이 쉽지 않다. 이를 위해 본 연구에서는 Convolutional Neural Networks (CNN)기반 모델인 U-Net 아키텍처에 레이어의 조합인 모듈을 추가하여 별도의 전처리 없이 수체탐지의 정확도 향상 방법을 제시하였다. 풀링 레이어의 조합을 활용하여 형태학적 연산처리 효과를 제공하는 Morphology Module과 전통적인 경계탐지 알고리즘의 가중치를 대입한 컨볼루션 레이어를 사용하여 경계 학습을 강화시키는 Edge-enhanced Module의 다양한 버전을 테스트하여, 최적의 모듈 구성을 도출하였다. 최적의 모듈 버전으로 판단된 min-pooling과 max-pooling이 연속으로 이어진 레이어와 min-pooling로 구성된 Morphology 모듈과 샤를(Scharr) 필터를 적용한 Edge-enhanced 모듈의 산출물을 U-Net 모델의 conv 9에 입력자료로 추가하였을 때, 정량적으로 9.81%의 F1-score 향상을 보여주었으며, 기존의 U-Net 모델이 탐지하지 못한 작은 수체와 경계선을 보다 세밀하게 탐지할 수 있는 성능을 정성적 평가를 통해 확인하였다.

네트워크 중심성 척도가 추천 성능에 미치는 영향에 대한 연구 (A Study on the Effect of Network Centralities on Recommendation Performance)

  • 이동원
    • 지능정보연구
    • /
    • 제27권1호
    • /
    • pp.23-46
    • /
    • 2021
  • 개인화 추천에서 많이 사용되는 협업 필터링은 고객들의 구매이력을 기반으로 유사고객을 찾아 상품을 추천할 수 있는 매우 유용한 기법으로 인식되고 있다. 그러나, 전통적인 협업 필터링 기법은 사용자 간에 직접적인 연결과 공통적인 특징을 기반으로 유사도를 계산하는 방식으로 인해 신규 고객 혹은 상품에 대해 유사도를 계산하기 힘들다는 문제가 제기되어 왔다. 이를 극복하기 위하여, 다른 기법을 함께 사용하는 하이브리드 기법이 고안되기도 하였다. 이런 노력의 하나로서, 사회연결망의 구조적 특성을 적용하여 이런 문제를 해결하려는 시도가 있었다. 이는, 직접적으로 유사성을 찾기 힘든 사용자 간에도 둘 사이에 놓인 유사한 사용자 또는 사용자들을 통해 유추해내는 방식으로 상호 간의 유사성을 계산하는 방식을 적용한 것이다. 즉, 구매 데이터를 기반으로 사용자의 네트워크를 생성하고 이 네트워크 내에서 두 사용자를 간접적으로 이어주는 네트워크의 특성을 기반으로 둘 사이의 유사도를 계산하는 것이다. 이렇게 얻은 유사도는 추천대상 고객이 상품의 추천에 대한 수락여부를 결정하는 척도로 활용될 수 있다. 서로 다른 중심성 척도는 추천성과에 미치는 영향이 서로 다를 수 있다는 점에서 중요한 의미를 갖는다 할 수 있다. 이런 유사도의 계산을 위해서 네트워크의 중심성을 활용할 수 있다. 본 연구에서는 여기서 더 나아가 이런 중심성이 추천성과에 미치는 영향이 추천 알고리즘에 따라서도 다를 수 있다는 데에서 주목하여 수행되었다. 또한, 이런 네트워크 분석을 활용한 추천기법은 신규 고객 혹은 상품뿐만 아니라 전체 고객 혹은 상품으로 그 대상을 넓히더라도 추천 성능을 높이는 데 기여할 것을 기대할 수 있을 것이다. 이런 관점에서 본 연구는 네트워크 모형에서 연결선이 생성되는 것을 이진 분류의 문제로 보고, 추천 모형에 적용할 분류 기법으로 의사결정나무, K-최근접이웃법, 로지스틱 회귀분석, 인공신경망, 서포트 벡터 머신을 선택하고, 온라인 쇼핑몰에서 4년2개월간 수집된 구매 데이터로 실험을 진행하였다. 사회연결망에서 측정된 중심성 척도를 각 분류 기법에 적용하여 생성한 모형을 비교 실험한 결과, 각 모형 별로 중심성 척도의 추천성공률이 서로 다르게 나타남을 확인할 수 있었다.

산림지역에서의 LiDAR DEM 정확도 향상을 위한 FUSION 패러미터 선정에 관한 연구 (A Study on the Selection of Parameter Values of FUSION Software for Improving Airborne LiDAR DEM Accuracy in Forest Area)

  • 조승완;박주원
    • 한국산림과학회지
    • /
    • 제106권3호
    • /
    • pp.320-329
    • /
    • 2017
  • 본 연구는 항공 LiDAR DEM을 생산하는 FUSION 소프트웨어의 GroundFilter 모듈의 필터링 알고리즘(FA)과 GridSurfaceCreate 모듈의 보간 알고리즘(IA) 패러미터 수준 변화의 DEM 정확도에 대한 영향여부를 평가하고, 가장 정확한 해발고도 정보를 제공하는 LiDAR DEM을 생산하기 위한 패러미터 수준을 제시하고자 하였다. FA의 median 패러미터($F_{md}$), mean 패러미터($F_{mn}$) 및 IA의 median 패러미터($I_{md}$), mean 패러미터($I_{mn}$)에 대해 5개 수준(1, 3, 5, 7 및 9)을 적용한 조합의 변화에 따라 DEM의 정확도에 대한 영향 여부를 평가하기 위해 DEM 결과물의 해발고도와 실측한 현장 해발고도 간의 잔차를 종속변수로 선정하였다. 이후 패러미터의 수준 변화가 잔차 변화에 대한 영향 여부를 검정하는 다원분산분석을 실시하고, 다원분산분석 결과에서 유의미한 영향이 있는 변수의 패러미터 수준들을 잔차에 대한 영향이 차이가 나는 집단으로 그룹화하기 위해 사후검정인 Tukey HSD를 수행하였다. 다원분산분석 결과, 개별 $F_{md}$, $F_{mn}$, $I_{mn}$에서의 수준 변화와 잔차 변화 사이에 유의미한 관계가 있었으며, $I_{mn}$은 유의미한 영향이 없었다. 아울러 $F_{md}$$F_{mn}$의 패러미터 조합의 상호작용효과가 잔차 변화에 유의미한 영향을 미치는 것으로 나타났다. 이에 따라 $F_{md}$$F_{mn}$의 수준 및 $F_{md}{\ast}F_{mn}$ 상호작용 수준 그리고 $I_{mn}$의 수준이 DEM 정확도에 영향을 주는 요인으로 판단된다. $F_{md}{\ast}F_{mn}$의 조합에 대한 사후검정 결과, 잔차들의 평균 차이에 따라 네 개의 집단으로 나뉘었으며, 그중 '$9{\ast}3$' 조합이 가장 정확도가 높았으며, '$1{\ast}1$' 조합이 가장 낮은 정확도를 나타내었다. $I_{mn}$의 사후검정 결과, 세 개의 집단으로 나뉘었으며, 그중 수준 '3'과 '1'이 가장 낮은 잔차 평균값을 나타내었다. 따라서 가장 정확한 해발고도 정보를 제공하는 항공 LiDAR DEM의 생성을 위하여 $F_{md}{\ast}F_{mn}$의 조합이 수준 '$9{\ast}3$', $I_{mn}$은 수준 '3' 혹은 '1'인 조건을 우선적으로 고려해야할 것으로 판단된다. 본 연구는 LiDAR 자료 기반의 산림속성정보를 추출하는 연구들의 정확도 향상에 기여할 수 있을 것으로 사료된다.

정량적 도전율측정의 오차와 $B_1{^+}$ map의 노이즈에 관한 분석 (Quantitative Conductivity Estimation Error due to Statistical Noise in Complex $B_1{^+}$ Map)

  • 신재욱;이준성;김민오;최나래;서진근;김동현
    • Investigative Magnetic Resonance Imaging
    • /
    • 제18권4호
    • /
    • pp.303-313
    • /
    • 2014
  • 목적: 자기공명 영상장치(MRI)의 송신 자기장 정보를 이용한 인체 내 도전율을 측정하는 기술이 최근 제안되었다. 송신 자기장 정보의 노이즈에 따른 도전율의 오차를 측정하고 도전율과 노이즈의 관계를 모델화 하였다. 대상과 방법: 송신 자기장의 분포는 원형 모델에 대해서 시뮬레이션을 수행하였다. 시뮬레이션으로 생성된 송신 자기장의 분포에 가우시안 노이즈를 더해준 후 정량적인 도전율 측정에 어떤 영향을 주는지 공명 주파수, 물체의 크기, 송신 자기장의 신호 대 잡음 비에 대해서 수행하였다. 각 각의 변수에 따른 도전율 대 잡음 비를 측정하여 모델화 하였다. 결과: 시뮬레이션 결과 도전율 측정은 송신 주파수의 크기 오차보다 위상 오차에 더 큰 영향을 받는 것을 보였다. 또한, 송신 자기장의 신호 대 잡음 비, 공명 주파수, 도전율 값, 평균필터의 크기에 따라서 도전율 대 잡음비가 비례하는 경향성을 보였다. 하지만, 물체를 둘러싼 외부 물질의 크기는 도전율 측정에 큰 영향을 주지 않았다. 위의 시뮬레이션 결과는 3T 임상용 MRI에서 원형 모델 팬텀에 대해서 검증되었다. 결론: 시뮬레이션을 통해 얻어진 변수와 도전율 측정의 오차와의 관계를 통해서 정량적인 도전율 측정에서 발생되는 오차를 모델화 할 수 있었다. 또한 제시된 분석 방법을 통하여 자기공명 영상 장치를 이용한 도전율 측정의 필터링 및 재구성 알고리즘의 효과를 검증 할 수 있을 것으로 보인다.

컴팩트 플래쉬 방식의 휴대용 산소포화도 측정 시스템 구현 (Implementation of a portable pulse oximeter for SpO2 using Compact Flash Interface)

  • 이한;김영길
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2003년도 춘계종합학술대회
    • /
    • pp.678-681
    • /
    • 2003
  • 컴팩트 플래쉬방식의 휴대용산소포화도와 ECG감시 시스템을 구현하는데 목적이 있다. 먼저 휴대용 산소포화도의 측정은 산소포화도와 맥박을 동시에 측정해서 2채널을 기록하도록 설계했다. 다른 장치없이 환자의 상태를 감지할 수 있고 소형화되고 휴대 가능하게 했다. 환자모니터링에 의해 발생하는 문제점을 해결하기 위해 기저선변동을 없애기 위해 2D 섹터 알고리즘을 적용시킨 아날로그 보정회로를 추가했다. 현재 SpO2모듈은 완성됐지만 컴팩트 플래쉬 방식을 사용하는데는 아직까지 많은 개선의 여지가 있다. ECG감시장치는 3극자 ECG시스템을 적용했다. 필터로는 2가지가 혼합된 방식이다. 하나는 전력선을 없애는 것이고 다른 하나는 기저선 변동을 없애는 것이다. 이것은 DC간섭을 줄이고 전력선의 주파수 간섭을 없애는 효과가 있다. 컴팩트플래쉬 방식으로 환자의 정보를 적은 비용으로 쉽게 기록하고 의료기관에 알릴수 있다.

  • PDF