• Title/Summary/Keyword: 필요저수량

Search Result 227, Processing Time 0.032 seconds

The Effect of Reservoir Design Capacity on Water Balance Analysis Method (물수지 분석방법이 저수지 설계용량에 미치는 영향)

  • Lee, Jaenam;Shin, Hyungjin;Kim, Haedo;Kang, Seokman
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.196-196
    • /
    • 2017
  • 저수지는 계절적 변동이 큰 하천유량을 저류시켜 적정시기에 용수를 공급하는 시설물이다. 저수지 설계에서 저수용량 결정은 중요한 사항으로 가정한 유효저수량을 적정하게 활용할 수 있는 것인지에 대한 분석이 필요하다. 이를 위한 물수지 분석은 시설물의 유입량과 유출량 등 인자를 모형화하여 저수량 거동변화를 살펴보는 것으로 농업용저수지의 설계실무에서는 일련의 물수지 분석을 수행할 수 있도록 개발된 HOMWRS (Hydrological Operation Model for Water Resource System) 프로그램을 이용한다. 물수지 계산을 위한 모의기간 설정은 일별, 순별로 구분되는데 이에 따라 유입량과 공급량 산정 방법이 달라진다. 일별 물수지 분석은 유출모형으로 DIROM 모형, 필요수량 산정은 Penman식을 적용하고, 순별 물수지 분석은 유출모형으로 미산식, 필요수량 산정은 Blaney-Criddl식을 적용함에 따라 저수지 설계시 필요저수량에 차이가 발생한다. 따라서 본 연구에서는 일별 및 순별 물수지 분석방법이 저수지 설계용량 결정에 미치는 영향을 분석하고자 하였다. 연구대상 저수지는 농업용수 공급을 목적으로 하는 경기도 화성시에 위치한 버들저수지를 대상으로 하였고 순별 및 일별 분석기간 설정에 따른 물수지 분석을 수행하여 농업용저수지 설계빈도 10년에 대한 분석기간별 필요저수량을 비교 분석하였다. 본 연구결과는 양수저류사업, 지표수보강사업, 다목적농촌용수개발사업 등 농업용수 확보를 위한 농업용저수지 설계업무 수행시 물수지 분석기간 결정에 참고할 수 있는 기초자료로 활용될 수 있을 것으로 기대된다.

  • PDF

A Study on storage caculation of Ungauged reservoir (미계측 저수지의 저수량 산정에 관한 연구)

  • Jang, Moon Yup;Song, Ju Il;Kim, Han Tae
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.400-400
    • /
    • 2018
  • 우리나라는 현재 17,310개소(2015년)의 저수지가 존재하고 있으며, 지자체가 13,916개소, 한국농어촌공사가 3,394개소를 관리하고 있다. 이중 30만㎥ 이상인 저수지가 전체 저수량의 대부분을 차지하기 때문에 1,500개소에 대해서는 저수위 등이 계측되고 있고, 그 외에 소규모 수리시설물의 경우 유역면적, 만수면적, 총저수량, 유효저수용량, 제원 등 현황만 관리되고 있다. 그러나 미계측 되는 10만$m^3$ 미만 소규모 수리시설물(15,175개소)의 총저수량은 약 2.5억$m^3$으로 전체의 4.2%에 불과 하지만, 수혜면적 32.9만ha로 전체의 약 65.9%를 차지하고 있어 소규모 수리시설물의 저수량을 파악할 필요가 있다. 미계측 수리시설물의 저수량 측정은 수문계측기를 이용하는 방법이 가장 정확한 방법이나 비용이 과다하게 소요되는 측면이 있어 전국 저수지에 설치하는 것은 현실적으로 불가능하기에 미계측 수리시설물의 저수면적-저수량 관계식을 개발하여 저수량을 도출하고자 한다. 미계측 수리시설물 저수량 산정은 저수지의 지리적 위치, 저수지의 형태(삼각, 사각, 원형 등), 총 저수량 등에 따라 단면 형태를 추정하여 구분한다. 저수면적-저수량 관계식을 형태별로 제시하여 실제 계측이 이루어지고 있는 자료와의 비교 검토를 통해 관계식을 검증하고자 한다.

  • PDF

Examination Reservoir water sensitivity by measurement inflow (실측유입량에 의한 저수용량 민감도 검토)

  • HwangBo, Jong-Gu;Shin, In Jong;Jo, Dae Hyeong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.266-266
    • /
    • 2022
  • 효율적인 댐 운영은 정확한 수문자료가 필수이다. 많은 댐 운영자들은 실측자료, 수문모형 등을 이용하여 정확한 유입량과 유출량을 산정하지만 댐 저수용량은 상대적으로 정확하게 계산하지 않는 측면이 있다. 하지만 발전용수, 농업용수, 생활용수 등 실질적으로 이용되는 물은 댐저수지의 물이며 이를 정확하게 산정하는 것은 효율적인 댐 운영에 있어서 대단히 중요하다. 국내 대부분의 댐은 시간에 따른 수위 변화량을 이용하여 저수량을 산정하고 있으며 이는 실질적인 저수용량을 파악하기에 다소 어려움이 따른다. 더군다나 우리나라 댐 저수지는 대부분 저수지 내에 한 개의 수위를 관측하여 저수용량을 산정하고 있으며 이는 수km에서 수십km에 이르는 저수지 크기를 고려하면 큰 오차가 발생할 수도 있다. 본 연구에서는 북한강 유역의 화천댐, 춘천댐, 의암댐, 청평댐과 달천 괴산댐에서 실측유입량에 따른 댐 저수위 반응을 살펴보고 저수용량을 정확하게 산정하는 방안을 모색하고자 하였다. 각 댐별로 저수위 0.01m 변화에 따른 저수용량 변화를 검토하였으며 갈수기라고 할 수 있는 11월과 홍수기에 해당하는 7월의 실측 유입량에 따른 댐 저수용량 변화를 검토하였다. 이를 기존의 방법인 저수위 변화로 계산된 유입량과 실측자료에 산정된 유입량을 비교하여 그 차이를 확인하였다. 실측자료와 저수위 변화를 이용한 유입량을 비교·검토한 결과 차이를 보였으며 실측유입량이 저수지 수위를 0.01m 변화시키기 위해서는 최소 30분에서 최대 120분 가량 소요되는 것으로 나타났다. 즉 유입되는 물에 비해 저수위 변화는 미미하여 현재의 계측 시스템으로는 저수량을 실시간으로 산정하기에 무리가 있다. 결국 실시간으로 댐 저수량 변화를 모니터링하기 위해서는 저수위 계측 분해능을 현 0.01m에서 0.001m로 향상시키고, 저수지 구간을 설정하여 구간별로 수위를 계측하고 저수량을 산정하는 방안이 필요한 것으로 생각된다.

  • PDF

Reservoir water surface slope measurement (저수지 수면경사 실측)

  • HwangBo, Jong-Gu;Oh, Seung Hyun;hong, jun hyuk;Kang, JinSung;Park, Dong Wan
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.267-267
    • /
    • 2022
  • 댐 운영에 있어서 필요한 수문자료는 강수량, 수위, 유량, 저수량 자료 등이 있다. 이중 저수량은 주로 댐수위-저수용량 곡선식을 이용하여 계산한다. 댐수위-저수용량 곡선식은 댐 부근에서 계측 되는 한 개의 수위자료를 이용하여 저수용량을 산정하며, 이는 큰 저수지 면적과 저수지 수면이 일정하지 않다는 것을 고려할 때 큰 오차가 발생할 수 있다. 본 연구에서는 음향 도플러 유속계 ADCP(Acoustic Doppler Current Profiler) 이용하여 보성강댐 저수지 수면경사를 실측하고, 동시에 실시간 이동측위시스템인 RTK-GPS(Real Time Kinematic)를 이용하여 이를 검증하였다. ADCP는 유수의 흐름을 방해하지 않으면서 수중에 발사된 음파의 도플러 효과를 이용하여 유속, 유량 및 측량이 가능한 장비이며, RTK-GPS의 경우 정밀한 위치정보를 가지고 있는 기준국의 위상에 대한 보정치를 실시간으로 이용하여 오차가 ±0.03m 이하인 것으로 알려졌다. 보성강댐의 하류에서 ADCP와 RTK-GPS를 장착한 보트를 저수지 종방향으로 처음부터 끝까지 이동하여 약 7.5km 종단측량을 실시하였고 저수지 지형적 특성을 고려하여 약 700m마다 횡단측량을 실시하여 종방향뿐만 아니라 횡방향 수면차도 조사하였다. 그 결과 보성강댐의 상류로 갈수록 수면경사가 전체적으로 상승하는 경향을 보였지만 일부구간에서 수위가 하강하는 경우도 발생하였다. 이는 미약하지만 저수지 내에 흐름이 발생하고 이 흐름에 따른 통제가 변화되는 것과 중간에 유입되는 지류의 영향 등으로 구간별로 수면경사 차이가 발생하는 것으로 추정된다. 횡방향 수면차는 지류가 유입되는 일부구간에서 다소 차이를 보였지만 큰 영향을 없는 것으로 판단된다. 보성강댐 저수지 수면을 종방향 및 횡방향으로 실측한 결과 구간별로 차이를 보였으며 최대 EL. 126.60m, 최소 EL. 126.33m 나타났다. 댐 상류 부근의 수면높이 EL. 126.50m와 비교하면 +0.10m, -0.17m 차이를 보였으며 이는 저수량 산정에 큰 오차를 발생시킨다. 효과적인 댐 운영을 위해서는 유입량 및 유출량을 정확하게 산정하는 것도 필요하지만 저수량을 정확하게 파악하는 것 역시 필요하다. 저수량을 정확하게 산정하려면 수킬로미터가 넘는 저수지 크기를 고려하여 수면경사를 실시간으로 계측하는 등의 노력이 필요한 것으로 판단된다.

  • PDF

Analysis of Storage Requirement of an Agricultural Reservoir in Chungcheongnam-do Province Using MM5 (MM5를 이용한 충청남도지역 농업용저수지 필요저수량 변화 분석)

  • Yun, Dong-Koun;Chung, Sang-Ok;Kim, Seong-Joon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.1862-1866
    • /
    • 2010
  • 기후변화에 관한 정부간 협의체(International Panel on Climate Change, IPCC) 4차 보고서에는 21세기말 지구의 평균기온이 최대 $6.4^{\circ}C$ 까지 더 상승할 것으로 전망하였다(IPCC, 2007). 지구의 평균온도는 지난 100년 동안 $0.74^{\circ}C$ 상승하였으며 그중 0.45%는 최근 25년간 상승한 것이며 이것은 지난 100년 보다 2.4배나 빠르게 상승하고 있는 추세이다. 우리나라의 경우 기온이 전 지구평균기온에 비해 2배 이상 높은 $1.5^{\circ}C$정도 상승 하였다. 또한 온실가스 증가 속도는 다른 나라에 비해 빠르게 진행되고 있으며, 1990년에서 지난 2001년간 다른 OECD국가들과 비교했을 때 가장 빠르게 증가하고 있을 뿐 아니라($CO_2$배출량은 OECD국가 중 10위) 현재와 같은 에너지 다소비형 산업구조와 소비패턴으로는 온실가스 배출량이 감소할 가능성은 낮은 것으로 분석된다. 따라서 우리나라의 경우 다른 국가에 비하여 기후변화에 취약한 위치에 있고 민감하게 반응함에 따라 미래 기후변화에 대한 영향은 우리나라 농업수자원에 큰 영향을 미칠 것으로 판단된다. 본 연구에서는 기상청에서 제공하는 MM5 기상자료를 이용하여 농업용저수지 필요저수량 변화를 예측하였다. MM5 기상자료는 충남 서산관측소 과거 관측자료를 이용하여 편의보정을 거쳐 재추출하였다. 생성된 자료는 물수지분석 입력 자료로 구축하여 충남에 위치한 고풍저수지에 대하여 필요저수량변화를 예측하였다. 그 결과 기온상승으로 인한 실재증발산량은 676mm에서 717mm로 41mm가 증가하였으며, 소비수량 또한 1,617mm에서 1,659mm로 42mm 증가하였다. 유효우량은 2020s는 520mm 이였으나 2080s는 533mm으로 13mm 증가한 것으로 분석되었다. 본 자료를 이용하여 고풍저수지의 필요저수량을 분석한 결과 2020s, 2050s, 2080s 각각 31.2%(3,538.9천$m^3$), 16.0%(1,489.7천$m^3$), 26.6%(2,834.5천$m^3$)가 부족한 것으로 예측되었다. 이는 강우량은 증가하나 기준년도에 비하여 5월 8월이 낮게 예측된 것이 가장 큰 원인으로 분석되었다. 따라서 소비수량은 증가하지만 유효유량의 부족으로 필요저수량이 부족한 것으로 예측되었다.

  • PDF

Development of rehabilitated agricultural reservoir operation for releasing environmental water (둑높이기 농업용저수지의 환경용수 방류를 위한 운영기준 설정)

  • Yoo, Seung-Hwan;Choi, Jin-Yong;Lee, Sang-Hyun;Cho, Young-Hyun;Kim, Hae-Do
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.447-447
    • /
    • 2012
  • 농업용저수지 둑높이기 사업은 기존 농업용저수지의 둑을 높여 저수량을 추가확보하여 갈수기에 본류 및 지류에 환경용수 공급을 하기 위하여 시행 중이다. 기존의 농업용저수지는 농업용수라고 하는 단일 목적 용수 공급을 위한 저수지로서 용수공급은 대상작물의 재배시기에 맞추어 이루어지고 있다. 둑높이기 대상 농업용저수지는 농업용수 및 환경용수 공급이라는 다중목적을 수행하여 한다. 따라서 기존의 농업용저수지 운영기준과는 차별되는 운영기준 설정이 필요하다. 이에 본 연구에서는 농업용 저수지의 농업용수 공급 능력을 유지하며, 하류하천에 유지유량을 공급할 수 있는 운영기준을 설정하였는데, 농업용 저수지의 규모에 따라서 운영기준을 제안하였다. 먼저 중소규모 저수지의 운영기준은 운영기준곡선의 개념을 활용하여 현저수량을 운영기준곡선에 대입하여 적정 방류가능량을 설정하였다. 구체적으로 저수지 유입량을 고려하여 연중 방류 가능한 기준방류량을 선정하고, 기준방류량의 연중 방류에 따른 최대, 최소 방류기준곡선과, 사업 전 저수량을 고려하여 방류제한 곡선을 설정하였다. 한편 대규모 저수지의 경우 기준방류량을 설정하기 위하여 과거 30년 이상의 저수량 모의를 통하여 비관개시 시점의 각 초기저수량에 따라 관개기 시점의 목표 저수량을 만족할 수 있는 초기저수량별 기준방류를 설정하고 이를 바탕으로 운영 기준을 설정하였다. 설정된 운영기준을 적용하여 일별 저수량을 모의하고, 운영기준 적용에 따른 환경용수 공급 능력 및 이수안전도의 분석하였다.

  • PDF

Improvement of water balance equation considering evaporation and re-evaluation of dam inflow (소양강댐 유역의 증발을 고려한 물수지 방정식 개선 및 댐 유입량 재산정)

  • Yoo, Jiyoung;Lee, Dong Jin;Yoo, Do-Guen;Kim, Tae-Woong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.106-106
    • /
    • 2022
  • 댐 유역의 수문자료는 댐의 효율적인 운영, 중장기 댐 운영 계획, 수자원 관리, 댐 저수량 예보 등을 위해 사용되며, 최근 기후변화로 인해 정밀한 댐 운영에 필요한 유량자료의 필요성은 더욱 커지고 있다. 일반적으로 댐의 주요 수문자료에는 유입량의 요소, 저수량 요소, 유출량의 요소로 구분된다. 현재까지 강수량, 저수위, 방류량 자료는 지속적인 계측 및 품질관리 기술의 발전으로 인해 신뢰도가 점차 향상되고 있으나, 반면 증발량과 침투량 자료는 여전히 정확한 계측에 많은 어려움이 있다. 따라서 우리나라의 댐 유입량은 직접측정의 현실적 제약사항으로 인해, 방류량과 저수위 변화에 따른 저류량의 차를 이용하여 간접적으로 측정하고 있어, 증발량 및 지하수 유출량 등과 같은 복잡한 자연현상을 고려하지 못한 채 저수지 수위의 변화에 따른 민감도가 크게 발생하는 문제로 이어지게 된다. 본 연구에서는 소양강댐 유역의 증발을 고려하는 개선된 물수지 방정식을 제안하였다. 그 결과, 기존의 댐 유입량 자료에서 발생하는 문제점은 증발을 고려한 물수지법 적용을 통해 어느 정도 개선이 가능하다. 즉, 기존의 댐 유입량 산정 시 고려하지 않는 다양한 유출 요인에 대한 과도한 누락은 음유입량 발생문제를 야기하며, 실제 복잡한 자연현상을 설명하기 위해서는 추가적인 유출 요소(증발량)를 물수지 방정식에 포함할 필요가 있다. 이처럼 개선된 물수지법을 적용할 경우, 직접적인 가용수자원을 구성하는 직접 유출량과 간접 유출량이 전체 유입량에 기여하는 정도를 파악할 수 있다. 다만, 여기에서의 증발량은 유역 내 실측자료가 아님과 동시에 수면 증발량을 고려하지 못한 한계가 있으며, 향후 연구에서는 보다 정확도 높은 수문자료의 생산 및 확보를 위한 지속적인 노력이 필요하다.

  • PDF

Storage Rate Estimation of Irrigation Reservoir by Long term Rainfall-Runoff Modeling (장기유출모의를 통한 농업용저수지 저수율 예측)

  • Park, Jong-Pyo;Jeong, Soon-Chan;Yu, Chang-Hwan;Won, Chang-Yeon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.321-326
    • /
    • 2012
  • 장기유출모형을 이용하여 농업용저수지 유입량을 예측하고 농업용수 필요수량 및 홍수기 저수지 홍수조절을 통한 방류량 데이터를 이용하여 장기간에 대한 농업용저수지 저수율을 계산하였다. 계산결과와 실측 저수율 데이터의 비교 검증을 통하여 모형의 적용성을 평가하였다. 대상유역은 담양댐 지점이며 유역면적은 $47.2km^2$ 이며 주 하천 연장은 12.0km 이다. 담양댐은 저수용량에 비하여 유역면적이 작기 때문에 댐 계획 당시 순창군 구림면에 유역면적 $18.4km^2$ 인 2개의 보를 축조하여 유역변경방식으로 간접유역 유출량을 비관개기 및 홍수시에 도수하며 최대 도수량은 $10m^3/s$이다. 장기유출모의는 한국수자원공사(2001)에서 수행한 전역최적화기법인 콤플렉스 혼합진화기법을 통하여 추정된 나주지점의 모형보정 성과를 활용하였으며 모의기간은 1981-2010년(30년)이다. 장기유출모의 결과 담양댐 유역의 평균 유출율은 67% 인 것으로 분석되었다. 농업용수 필요수량은 한국농촌공사에서 산정한 연도별 필요수량 산정결과를 이용하여 실측 농업용수 월별 방류량 자료를 기준으로 관개개간인 4월 21일-9월 20일(163일)동안 월별로 분배하여 적용하였다. 홍수조절은 기존 댐 상시만수위, 홍수기제한수위 데이터를 근거로 운영하였다. 일별저수지 운영모형은 미공병단의 HEC-5 모형을 이용하였으며 한국농어촌공사 농촌용수종합 정보시스템(RAMIS)의 댐 일별 저수율 현황과 기존저수지 일별 저수지 모의운영결과를 비교 검증하였다. 모형수행결과 실측저수율과 모형수행결과의 상관계수는 0.93 인 것으로 분석되었다. 연구결과, 장기유출모의 결과와 연계하여 농업용수, 하천유지용수, 홍수조절을 고려한 저수지 운영을 통하여 비교적 정확하게 농업용저수지 저수율을 예측할 수 있을 것으로 판단된다. 본 연구성과를 바탕으로 농업용저수지의 장기적인 용수수급현황을 예측하여 효율적인 용수공급계획을 수립할 수 있을 것으로 기대된다.

  • PDF

Analysis of Agricultural Reservoir Drought Reaction Capability Followed by Precipitation Change of Non-irrigation Period (비관개기 강수량 변화에 따른 농업용저수지의 미래 가뭄 대응 능력 분석)

  • Bang, Je-Hong;Lee, Sang-Hyun;Lee, Sung-Hack;Choi, Jin-Yong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.538-538
    • /
    • 2015
  • 농업가뭄에 대한 연구는 주로 가뭄지표의 개선과 제안 등에 초점이 맞추어져 있으며 관개기의 강수량에 중점을 둔 사례가 대부분이다. 그러나 대부분의 논 관개용수는 저수지를 통하여 공급되기 때문에 관개가 시작되는 4월 초순의 저수량은 상당히 중요한 가뭄 대응 요소이다. 이에 따라 가뭄에 대비하기 위해서는 관개가 종료되는 10월부터 이듬해 3월까지 충분한 저수량이 확보될 필요가 있다. 그러나 기후변화에 의해 대부분의 강우가 관개기에 집중될 수 있으며 이에 따라 미래에는 비관개기 동안 충분한 저수량을 확보하는데 어려움이 발생할 수 있다. 이에 본 연구에서는 기후변화에 따른 비관개기의 강수량을 확률기반으로 분석하고, 이를 관개기 필요저수량과 비교하여 저수지의 미래 가뭄 대응 능력을 분석하고자 하였다. 기후변화에 따른 비관개기의 강수량 변화를 분석하기 위하여 RCP(Representative Concentration Pathways) 시나리오를 적용하여 미래 비관개기 동안의 연도별 비관개기 누적강수량을 분석하였다. 과거와 미래시기를 30년 단위로 구분하여 1995s, 2025s, 2055s, 2085s의 비관개기 동안의 비초과확률 10%, 50%, 90%의 강수량을 분석하였다. RCP 4.5 시나리오를 기반으로 모의한 미래강우의 비초과확률 10% 누적강수량 산정 결과에 따르면 주요 곡창지대인 전라남북도는 1995s에는 10월부터 이듬해 3월까지의 누적강수량이 약 215mm 정도로 나타났으나 2025s에는 약 150mm로 줄어드는 것으로 나타났다. 즉, 비초과확률 10%의 강우가 내릴 경우 비관개기 동안에 충분한 저수량의 확보가 어렵게 되고 관개기의 심각한 가뭄을 초래할 수 있었다. 비관개기 누적강수량과 저수량변화의 관개를 모의한 개운저수지와 계룡저수지의 경우 그 관계식은 y=1.442x-198.81, y=5.8105x-752.92와 같이 나타났다. y는 비관개기의 저수량변화를 나타낸 것이고 x는 비관개기의 누적강우량을 나타낸 것이다. 식을 통해 향후 100년 중 비초과확률 10%의 강수를 가정한다면 개운저수지는 관개종료시점의 저수율이 최소 96.93% 이상이여야 다음해 관개시작시점의 저수위가 만수위가 될 수 있었고, 계룡 저수지는 최소 86.84%의 저수위를 만족해야 다음해 관개시작시점의 저수위가 만수위가 될 수 있었다.

  • PDF

Volume Estimation Method for Greenhouse Rainwater Tank (온실 빗물 저수조의 용량산정 방법)

  • Seo, Chan Joo;Koo, Ja-Kong
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.24 no.2
    • /
    • pp.31-39
    • /
    • 2016
  • Due to the temporal variation of inflow/outflow, the water tank is needed. For the calculation of water tank capacity, the absolute difference between cumulative amounts of supply(e.g., rainfall) and demand(e.g.,watering) is used. No matter the (-) and (+) the absolute maximum capacity of the subtraction is calculated as the capacity. In this paper, using rainfall and watering of greenhouse facilities, it is proved that the non-linear supply or demand can be applied, and it is proved also that the greater non-linear variation case. And as the time interval for monitoring is decreased, the basin or tank volume are increased, with approximately 10 days as the critical monitoring interval for the annual natural rainfall event.