• Title/Summary/Keyword: 필름 선량계

Search Result 60, Processing Time 0.034 seconds

A Study on the Measurement of the Personal Exposure Dose by Film Badge Dosimeter (필름배지선량계에 의한 개인피폭선량 측정에 관한 연구)

  • Chung, Woon-Kwan
    • Journal of Radiation Protection and Research
    • /
    • v.19 no.1
    • /
    • pp.37-50
    • /
    • 1994
  • The experimental evaluation of exposure conversion formula using the relationship between optical photo-density, exposure dose and the quality of radiation characteristics of radiation energy to X-ray and ${\gamma}-rays$. The film badge dosimeter is analysed by exposure conversion formula which evaluate image fading characteristics for development time and directional characteristics for incident beam angle. In conclusion, exposure conversion formula evaluated of this study is satisfied with quality decision criterion of the film badge dosimeter.

  • PDF

Patient Specific Quality Assurance of IMRT: Quantitative Approach Using Film Dosimetry and Optimization (강도변조방사선치료의 환자별 정도관리: 필름 선량계 및 최적화법을 이용한 정량적 접근)

  • Shin Kyung Hwan;Park Sung-Yong;Park Dong Hyun;Shin Dongho;Park Dahl;Kim Tae Hyun;Pyo Hongryull;Kim Joo-Young;Kim Dae Yong;Cho Kwan Ho;Huh Sun Nyung;Kim Il Han;Park Charn Il
    • Radiation Oncology Journal
    • /
    • v.23 no.3
    • /
    • pp.176-185
    • /
    • 2005
  • Purpose: Film dosimetry as a part of patient specific intensity modulated radiation therapy quality assurance (IMRT QA) was peformed to develop a new optimization method of film isocenter offset and to then suggest new quantitative criteria for film dosimetry. Materials and Methods: Film dosimetry was peformed on 14 IMRT patients with head and neck cancers. An optimization method for obtaining the local minimum was developed to adjust for the error in the film isocenter offset, which is the largest part of the systemic errors. Results: The adjust value of the film isocenter offset under optimization was 1 mm in 12 patients, while only two patients showed 2 mm translation. The means of absolute average dose difference before and after optimization were 2.36 and $1.56\%$, respectively, and the mean ratios over a $5\%$ tolerance were 9.67 and $2.88\%$. After optimization, the differences in the dose decreased dramatically. A low dose range cutoff (L-Cutoff) has been suggested for clinical application. New quantitative criteria of a ratio of over a $5\%$, but less than $10\%$ tolerance, and for an absolute average dose difference less than $3\%$ have been suggested for the verification of film dosimetry. Conclusion: The new optimization method was effective in adjusting for the film dosimetry error, and the newly quantitative criteria suggested in this research are believed to be sufficiently accurate and clinically useful.

Utilization-Focused Reduction of Radiation Exposure with XCP-DS FIT Sensor Holder by Measuring Dose of Dental X-ray Generator (구내 방사선발생기의 선량 분포측정을 통한 필름유지기구(XCP-DS FIT)의 피폭선량감소에 대한 유용성)

  • Lee, Kyung Hee
    • Journal of the Korean Society of Radiology
    • /
    • v.6 no.6
    • /
    • pp.465-471
    • /
    • 2012
  • In this study, three dimensional X-ray dose distribution from dental X-ray generator system was measured by ALOKA PDM-117 dosimeter. The X-ray dose distribution will be change with XCP-DS FIT in oral shot, because the distance between X-ray generator and the dosimeter. The X-ray dose change affects on patient exposure and radiograph image quality. Therefore, it is important to obtain relation between the X-ray dose and the distance. The X-ray dose at the central position was decreased with increasing the distance. Furthermore, the dose at the edge of the X-ray flux was increased with increasing the distance. The increased dose affects on the patient radiation exposure. The present results will provide for good dental radiograph image and reducing radiation over-exposure on patient.

The Development and It′s Characteristics of New Film Dosimetry Algorithm for Personal Dosimetry (개인피폭 선량 측정을 위한 필름 배지 선량계의 새로운 알고리즘 개발 및 특성)

  • 이병용;장혜숙;봉정균;권수일
    • Progress in Medical Physics
    • /
    • v.6 no.2
    • /
    • pp.35-40
    • /
    • 1995
  • Purpose: We have developed new film dosimetry algorithm for personal dosimetry and examined its characteristics. Materials and methods: Agfagaevart personal monitoring 2/10 films are used. Films which are in the film badges filtered with Cu 0.3mm, plastic 1.5mm, Aluminum 0.6mm and tin 0.8mm, were exposed by standard dosimetry laboratory. Irradiated energy categories are ANSI N13.1l Category III, and IV. Manual type film precessor and X-rite film densitometor was used. Filtered densities to energy relations and does to transformed densities relations can be obtained ofter transformation of H&D curves to linear shape by polynomal fitting. Reults : Personal dose be determined within 25% error for category m and 15% for category IV. And we are able to evaluate the exposed energy. Conclusion : New algorithm developed in this study is good for personal dosimetry within 30% error range for catergory III and IV. It is expectd to be complete personal dosimetry algorithm with further study for categrory, I, Dand II V.

  • PDF

Dosimetric Verification of Dynamic Conformal Arc Radiotherapy (입체조형 동적회전조사 방사선치료의 선량 검증)

  • Kim Tae Hyun;Shin Dong Ho;Lee Doo Hyun;Park Sung Yong;Yun Myung Guen;Shin Kyung Hwan;Py Hong Ryull;Kim Joo-Young;Kim Dae Yong;Cho Kwan Ho;Yang Dae-Sik;Kim Chul-Yong
    • Progress in Medical Physics
    • /
    • v.16 no.4
    • /
    • pp.166-175
    • /
    • 2005
  • The purpose of this study is to develop the optimization method for adjusting the film isocenter shift and to suggest the quantitative acceptable criteria for film dosimetry after optimization In the dynamic conformal arc radiation therapy (DCAR). The DCAR planning was peformed In 7 patients with brain metastasis. Both absolute dosimetry with ion chamber and relative film dosimetry were peformed throughout the DCAR using BrainLab's micro-multileaf collimator. An optimization method for obtaining the global minimum was used to adjust for the error in the film isocenter shift, which is the largest pan of systemic errors. The mean of point dose difference between measured value using ion chamber and calculated value acquired from planning system was $0.51{\pm}0.43\%$ and maximum was $1.14\%$ with absolute dosimetry These results were within the AAPM criteria of below $5\%$. The translation values of film isocenter shift with optimization were within ${\pm}$1 mm in all patients. The mean of average dose difference before and after optimization was $1.70{\pm}0.35\%$ and $1.34{\pm}0.20\%$, respectively, and the mean ratios over $5\%$ dose difference was $4.54{\pm}3.94\%$ and $0.11{\pm}0.12\%$, respectively. After optimization, the dose differences decreased dramatically and a ratio over $5\%$ dose difference and average dose difference was less than $2\%$. This optimization method is effective in adjusting the error of the film isocenter shift, which Is the largest part of systemic errors, and the results of this research suggested the quantitative acceptable criteria could be accurate and useful in clinical application of dosimetric verification using film dosimetry as follows; film isocenter shift with optimization should be within ${\pm}$1 mm, and a ratio over $5\%$ dose difference and average dose difference were less than $2\%$.

  • PDF

Dosimetry by Using EBT2 Film for Total Skin Electron Beam Therapy (TSET) (전신 피부 전자선 치료(TSET)에서 EBT2 필름을 사용한 선량측정)

  • Hwang, Ui-Jung;Rah, Jeong-Eun;Jeong, Ho-Jin;Ahn, Sung-Hwan;Kim, Dong-Wook;Lee, Sang-Yeob;Lim, Young-Gyung;Yoon, Myong-Geun;Shin, Dong-Ho;Lee, Se-Byeong;Park, Sung-Young;Pyo, Hong-Ryull;Chung, Weon-Kuu
    • Progress in Medical Physics
    • /
    • v.21 no.1
    • /
    • pp.60-69
    • /
    • 2010
  • For treatment of Total Skin Electron beam Therapy (TSET), measurement of dose at various conditions is need on the contrary to usual radiotherapy. When treating TSET with modified Stanford technique based on linear accelerator, the energy of treatment electron beam, the spatial dose distribution and the actual doses deposited on the surface of the patient were measured by using EBT2. The measured energy of the electron beam was agreed with the value that measured by ionization chamber, and the spatial dose distribution at the patient position and the doses at several point on the patient's skin could be easily measured by EBT2 film. The dose on the patient that was measured by EBT2 film showed good agreement with the data measured simultaneously by TLD. With the results of this study, it was proven that the EBT2 film can be one of the useful dosimeter for TSET.

Development of Personal Dosimeter (개인 피폭선량 측정 시스템 개발)

  • Kwon, S.G.;Yi, U.K.;Lim, Hun;Sohn, C.H.;Kim, J.S.;Lee, C.J.
    • Proceedings of the KIEE Conference
    • /
    • 2000.11d
    • /
    • pp.724-726
    • /
    • 2000
  • 일반적으로 개인방사선감시에 열형광선량계와 필름배지가 공식 개인선량계로 이용되어 왔고 현재까지도 가장 보편적으로 사용되고 있다. 하지만 최근에는 Si 다이오드와 G-M관을 이용한 능동형 개인피폭선량계가 개발 보급되고 있다. 개인피폭선량계는 누적선량을 실시간으로 알 수 있다는 장점을 가지고 있을 뿐만 아니라 선량률에 관한 정보도 제공하므로 높은 비용부담에도 불구하고 피폭관리의 용이함으로 인해 주목을 받고 있다. 따라서 본 연구는 수입에 의존해 온 개인피폭선량계를 대체하기 위해 반도체형 방사선 검출기를 설계하여 다양한 서비스를 부가할 수 있는 개인피폭선량계를 자체개발고, 선량계의 운영 및 판독을 위한 장치를 개발하였다.

  • PDF

Comparison on the Dosimetry of TLD and OSLD Used in Nuclear Medicine (광자극발광선량계와 열형광선량계를 이용한 핵의학과 선량 측정비교)

  • Lee, Wang-Hui;Kim, Sung-Chul;Ahn, Sung-Min
    • The Journal of the Korea Contents Association
    • /
    • v.12 no.12
    • /
    • pp.329-334
    • /
    • 2012
  • For the dosimetry of the radiation workers, film badge, Thermo Luminescent Dosimeter (TLD), and glass dosimeter are being used and recently, there is a growing trend of using Optically Stimulated Luminescence Dosimeter (OSLD) in the world. However, OSLD is only being applied some of the field in Korea and there has been almost no study made related to OSLD. Thus, the accumulated radiation dose of TLD and OSLD that have been most frequently used in the field was compared in the radiation workers of nuclear medicine and their working areasfor 3 months. As a result, the average surface dose showed 0.85 mSv difference with 1.27 mSv for TLD and 2.12 mSv for OSLD while having 0.73 mSv difference for the average depth dose with 1.33 mSv for TLD and 2.06 mSv for OSLD. The surface dose and depth dose of OSLD showed statistically significant result with higher measurement (p<0.05).

Comparison of the Efficacy of 2D Dosimetry Systems in the Pre-treatment Verification of IMRT (세기조절방사선치료의 환자별 정도관리를 위한 2차원적 선량계의 유용성 평가)

  • Hong, Chae-Seon;Lim, Jong-Soo;Ju, Sang-Gyu;Shin, Eun-Hyuk;Han, Young-Yih;Ahn, Yong-Chan
    • Radiation Oncology Journal
    • /
    • v.27 no.2
    • /
    • pp.91-102
    • /
    • 2009
  • Purpose: To compare the accuracy and efficacy of EDR2 film, a 2D ionization chamber array (MatriXX) and an amorphous silicon electronic portal imaging device (EPID) in the pre-treatment QA of IMRT. Materials and Methods: Fluence patterns, shaped as a wedge with 10 steps (segments) by a multi-leaf collimator (MLC), of reference and test IMRT fields were measured using EDR2 film, the MatriXX, and EPID. Test fields were designed to simulate leaf positioning errors. The absolute dose at a point in each step of the reference fields was measured in a water phantom with an ionization chamber and was compared to the dose obtained with the use of EDR2 film, the MatriXX and EPID. For qualitative analysis, all measured fluence patterns of both reference and test fields were compared with calculated dose maps from a radiation treatment planning system (Pinnacle, Philips, USA) using profiles and $\gamma$ evaluation with 3%/3 mm and 2%/2 mm criteria. By measurement of the time to perform QA, we compared the workload of EDR2 film, the MatriXX and EPID. Results: The percent absolute dose difference between the measured and ionization chamber dose was within 1% for the EPID, 2% for the MatriXX and 3% for EDR2 film. The percentage of pixels with $\gamma$%>1 for the 3%/3 mm and 2%/2 mm criteria was within 2% for use of both EDR2 film and the EPID. However, differences for the use of the MatriXX were seen with a maximum difference as great as 5.94% with the 2%/2 mm criteria. For the test fields, EDR2 film and EPID could detect leaf-positioning errors on the order of -3 mm and -2 mm, respectively. However it was difficult to differentiate leaf-positioning errors with the MatriXX due to its poor resolution. The approximate time to perform QA was 110 minutes for the use of EDR2 film, 80 minutes for the use of the MatriXX and approximately 55 minutes for the use of the EPID. Conclusion: This study has evaluated the accuracy and efficacy of EDR2 film, the MatriXX and EPID in the pre-treatment verification of IMRT. EDR2 film and the EPID showed better performance for accuracy, while the use of the MatriXX significantly reduced measurement and analysis times. We propose practical and useful methods to establish an effective QA system in a clinical environment.