• Title/Summary/Keyword: 필렛 용접부

Search Result 49, Processing Time 0.029 seconds

The Fatigue Strength of Steel Bridge Components Attached with Non-load Carrying Out-of Plane Gusset Plate (하중 비전달형 면외 거셋판이 부착된 강교량 부재의 피로강도)

  • Woo, Sang Ik;Jung, Kyoung Sup
    • Journal of Korean Society of Steel Construction
    • /
    • v.10 no.4 s.37
    • /
    • pp.779-788
    • /
    • 1998
  • This paper presents the results of the experimental and analytical investigation for the fatigue strength of welded details frequently used in steel bridges, especially for the details with relatively lower fatigue strength. Considering the measured stress fatigue cracking initiated at toe of the transverse fillet weld joining the gusset plates to the web because of the stress concentration that developed as a result of the geometric conditions and the greater probability of microscopic discontinuities at the fillet weld toe A comparison was made of the stress calculated by considering geometric aspect of bead and measured at same position. They indicate that the geometric conditions of the weld toe result in similar stress concentration on both FEM models and test results. The test results were compared with the fatigue criteria of AASHTO, JSSC specifications. Specimens of 80 and 150mm gusset plate configuration tested either respectively equaled or exceeded the fatigue resistance provided by category D and E of the AASHTO specification. It also satisfied the category F and G of JSSC. Both WG1 and WG3 specimen tend to provide S-N curves with a store near -0.3 less than AASHTO and JSSC.

  • PDF

Effect of Mechanical Constraints on the Angular Distortion of Welding Joints (용접 각변형에 미치는 구속도의 영향)

  • Park, Jeong Ung;Lee, Jae Won;Lee, Hae Woo
    • Journal of Korean Society of Steel Construction
    • /
    • v.13 no.5
    • /
    • pp.547-556
    • /
    • 2001
  • This study presents new method in which to derive the constraint coefficient from the quantity of angular deformation by welding measured by varying the shape of welded joints and the magnitude of constraints by varying the shape of welded joints and the magnitude of constraints by experiment and from the result analyzed by elastic FEM method and then to decide equivalent load with it The numerical analysis results by this new method verified the validity by agreeing with the experimental result on specimen. In addition These results are applicable to the prediction of the quantity of welding deformation for large structures regardless of the size and the shape While in the effects of the constraints based on the shape of welded joints in the case of Butt welding when the constraint coefficients are not considered the deformed quantity is produced larger than one by the experiment and consequently is largely affected by the constraints But in the case of Fillet welding the deformed quantity is seldom affected regardless of considering the constraint coefficients or not.

  • PDF

Accelerated Life Prediction for STS301L Gas Welded Joint (I) - Fillet Type - (STS301L 가스용접 이음재의 가속수명예측 (I) - Fillet Type -)

  • Baek, Seung-Yeb
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.4
    • /
    • pp.467-474
    • /
    • 2010
  • Stainless steel sheets are widely used as the structural material for railroad cars and commercial vehicles. Structures made of stainless steel sheets are commonly fabricated by gas welding, For the fatigue design of gas welded joints such as fillet joints, it is necessary to obtain design information of the stress distribution at the weldment as well as the fatigue strength of the gas-welded joints. Further, the influence of the geometrical parameters of gas-welded joints on stress distribution and fatigue strength must be evaluated. in this study, ${\Delta}P-N_f$ curves were obtained by fatigue tests. and, the ${\Delta}P-N_f$ curves were rearranged on the basis of the ${\Delta}{\sigma}-N_f$ relation for the hot-spot stresses at the gas-welded joints. These results, were used for conducting an accelerated life test(ALT) From the experiment results, an acceleration model was derived and factors were estimated. The objective is to obtain the information required for the analysis of the fatigue lifetime of fillet welded joints and for data analysis by the statistic reliability method to save time and cost and to develop optimum accelerated life prediction plans.

Effects of Geometry of Reactor Pressure Vessel Upper Head Control Rod Drive Mechanism Penetration Nozzles on J-Groove Weld Residual Stress (원자로 상부헤드 제어봉구동장치 관통노즐 형상이 J-Groove 용접잔류응력에 미치는 영향)

  • Kim, Ju-Hee;Kim, Yun-Jae;Lee, Sung-Ho;Hur, Nam-Young;Bae, Hong-Yeol;Oh, Chang-Young;Kim, Ji-Soo;Park, Heung-Bae;Lee, Seung-Geon;Kim, Jong-Sung;Huh, Nam-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.10
    • /
    • pp.1337-1345
    • /
    • 2011
  • In pressurized water reactors (PWRs), the reactor pressure vessel (RPV) upper head contains numerous control rod drive mechanism (CRDM) nozzles. In the last 10 years, the incidences of cracking in alloy 600 CRDM nozzles and their associated welds has increased significantly. Several axial and circumferential cracks have been found in CRDM nozzles in European PWRs and U.S. nuclear power plants. These cracks are caused by primary water stress corrosion cracking (PWSCC) and have been shown to be driven by welding residual stresses and operational stresses in the weld region. Therefore, detailed finite-element (FE) simulations for the Korea Nuclear Reactor Pressure Vessel have been conducted in order to predict the magnitudes of the weld residual stresses in the tube materials. In particular, the weld residual stress results are compared in terms for nozzle location, geometry factor$r_o$/t, geometry of fillet, and adjacent nozzle.

A Study on the Distribution of Residual Stress in Fillet Welds for Thick Mild Steel Plate (두꺼운 연강판(軟鋼板) 필렛 용접(熔接)이음부의 잔류응력분포(殘留應力分布)에 대한 연구(硏究))

  • Dong-Suk,Um;Sung-Won,Kang
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.20 no.4
    • /
    • pp.17-24
    • /
    • 1983
  • In this study, it was investigated the distribution of residual stress in the direction of loading between the root and toe the load fillet welds for thick steel plate. Residual stress distributions are measured by sectioning method which is one of stress-relaxation technique in welded joint, and analyzed by two dimensional finite element method on thermo-elasto-plastic theory under plane stress condition. These are compared the results of F.E.M analysis with the experimental result by stress-relaxation techniques. As a results, the following conclusion were obtained. (1) In the no penetration fillet welded joint specimen using mild steel plate with 25mm in thickness, the residual stress of loading direction near the root was about $10kg/mm^2$ tensile. (2) The tensile residual stress has been observed in fillet region of the fillet joint by F.E.M. analysis method. (3) The range of compressive residual stress distribution from the root was largest in the case of 5mm root penetration.

  • PDF

Fracture mechanics approach to bending fatigue behavior of cruciform fillet welded joint (십자형 필렛 용접 이음부 의 굽힘피로 특성 에 대한 파괴역학적 고찰)

  • 엄동석;강성원;김영기
    • Journal of Welding and Joining
    • /
    • v.3 no.2
    • /
    • pp.52-63
    • /
    • 1985
  • Fillet welded joints, specially in ship structure, are well known the critical part where stress concentrate or crack initiates and grows. This paper is concerned with the study of the behavior of fatigue crack growth t the root and toe of load carrying cruciform fillet welded joints under three points bending by the determination of stress intensity factor from the J-Integral, using the Finite Element Method. The stress intensity factor was investigated in accordance to the variation of the weld size (H/Tp). weld penetration (a/W) and plate thickness (2a'/Tp). As mixed mode is occurred on account of shearing force under the three points bending, Stern's reciprocal theory is applied to confirm which mode is the major one. The main results may be summarized as follows 1) The calculation formula of the stress intensity factor at the both of root and toe of the joint was obtained to estimate the stress intensity factor in the arbitrary case. 2) The change of stress field around crack tip gives much influence on each other at the roof and toe as H/Tp decreases. 3) Mode I is a major mode under the three points bending.

  • PDF

An Experimental Study on Fatigue Fracture Behaviour of Surface Crack in Finite Plates and Fillet Welded T-joint (유한평판 및 T-joint 필렛 용접부에 있어서 3차원 표면균열의 피로 파괴거동에 관한 실험적 연구)

  • M.S. Han;J.D. Kim;H.S. Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.28 no.2
    • /
    • pp.275-284
    • /
    • 1991
  • Fatigure crack growth from surface defects is one of the most important subjects for the evaluation and the assurance of safety in pressure vessels, piping systems, ship hulls and other various structures. This paper attempts to analysis some practical or general problems such as the estimation of crack growth life to penetrate the plate thickness, based on fatigure crack growth from a single surface flaw and the interaction of multiple flaws. An experiment on the coalescence of multiple undercuts was carried out under cyclic tension condition as a attempt to the analysis of multiple crack problems. It is noted that the fracture strength is characterized by the analogy to that in a single crack growth.

  • PDF

An Estimation of the Fatigue Behavior on the Cruciform Type Specimen by Variation of the Stress Ratio (응력비 변화에 따른 십자형 접합부의 피로거동 평가)

  • 김태봉;서상구;우상익
    • Journal of the Korean Society of Safety
    • /
    • v.15 no.1
    • /
    • pp.140-145
    • /
    • 2000
  • This paper was composed with fatigue test of the cruciform specimens, as load carrying and non-load carrying type. It also has performed computational analyses for geometric condition of the fillet welding bead. As test results, the effect of stress ratio in the specimen was insignificant. Stress ranges were varied with R=0.1~0.2. The fatigue cracks that were found in the load carrying type specimens and most specimens welded with contact were developed at the end of welds. The fatigue strength of specimen that have fractured in maternal plate was found about ${\Delta}\sigma_c$=63.5MPa. It's about 24% less than that of the non-load carrying type specimens having about ${\Delta}\sigma_c$=83.8MPa. A category of the Fatigue design specifications which provide for cruciform details was defined grade C as a stress of the maternal member. And then, the fatigue strength to be transformed into the maternal stress was found about 78.27 MPa, it tends to be less than that of allowable fatigue strength.

  • PDF

Non-contact Ultrasonic Inspection Technology of Fillet Weldments (필렛 용접부의 비접촉 초음파 검사 기법)

  • Park, Ik-Keun;Lee, Chul-Ku;Kim, Hyun-Mook;Park, Tae-Sung;Kim, Yong-Kwon;Cho, Yong-Sang;Song, Won-Joon;Ahn, Houng-Kun
    • Journal of Welding and Joining
    • /
    • v.23 no.5
    • /
    • pp.37-42
    • /
    • 2005
  • The non-destructive Inspection of the fillet weldment has difficulties due to its geometrical complexity and uneasy access. The surface shear horizontal wave (SH-wave), however, has been successfully applied to the detection of cracks on the surface and sub-surface of the filet weldment heel part. The conventional ultrasonic inspection using the surface SH-wave is usually a contact method using piezoelectric transducer. Thus, it is not suitable for a field application because the reliability and repeatability of inspection are significantly affected by test conditions such as couplant, contact pressure and pre-process. In order to overcome this problem, a non-contact SH-wave inspection method using EMAT is propose. The experimental results with this non-contact method are compared with those with a conventional ultrasonic method in fillet weldment with slit type defects. It is shown that the non-contact inspection technique requires simple procedure and less time in the fillet weldment inspection.