• Title/Summary/Keyword: 픽셀응답불균일성

Search Result 2, Processing Time 0.015 seconds

CCD Non-uniformity Correction Method based on Pixel Non-Linearity Model (픽셀 비선형성 모델을 기반으로 한 영상센서 불균일 특성 보정)

  • Kim, Young-Sun;Kong, Jong-Pil;Heo, Haeng-Pal;Park, Jong-Euk;Yong, Sang-Soon
    • Aerospace Engineering and Technology
    • /
    • v.9 no.1
    • /
    • pp.28-34
    • /
    • 2010
  • All pixels of image sensor do not react uniformly when the light of same radiance enters into the camera. This non-uniformity has a direct influence on the image quality. However we can overcome it by calibration process under the special test-setup. Usually it is used the algorithm to get the correction coefficients under the specific illumination condition. But, this method has drawback in the very low or very high illumination due to pixel non-linearity. This paper describes the robust algorithm, which calculates the correction coefficients based on the pixel non-linearity model, against thew hole radiance. The paper shows the non-uniformity test results with the own camera and the specified test equipments as well. The results shows the best performance over the entire radiance when this method is applied.

Fixed Pattern Noise Reduction in Infrared Videos Based on Joint Correction of Gain and Offset (적외선 비디오에서 Gain과 Offset 결합 보정을 통한 고정패턴잡음 제거기법)

  • Kim, Seong-Min;Bae, Yoon-Sung;Jang, Jae-Ho;Ra, Jong-Beom
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.49 no.2
    • /
    • pp.35-44
    • /
    • 2012
  • Most recent infrared (IR) sensors have a focal-plane array (FPA) structure. Spatial non-uniformity of a FPA structure, however, introduces unwanted fixed pattern noise (FPN) to images. This non-uniformity correction (NUC) of a FPA can be categorized into target-based and scene-based approaches. In a target-based approach, FPN can be separated by using a uniform target such as a black body. Since the detector response randomly drifts along the time axis, however, several scene-based algorithms on the basis of a video sequence have been proposed. Among those algorithms, the state-of-the-art one based on Kalman filter uses one-directional warping for motion compensation and only compensates for offset non-uniformity of IR camera detectors. The system model using one-directional warping cannot correct the boundary region where a new scene is being introduced in the next video frame. Furthermore, offset-only correction approaches may not completely remove the FPN in images if it is considerably affected by gain non-uniformity. Therefore, for FPN reduction in IR videos, we propose a joint correction algorithm of gain and offset based on bi-directional warping. Experiment results using simulated and real IR videos show that the proposed scheme can provide better performance compared with the state-of-the art in FPN reduction.