• Title/Summary/Keyword: 피해감지

Search Result 293, Processing Time 0.025 seconds

Flight of Matsucoccus thunbergianae Males in Response to Synthetic Pheromone Placed at Various Heights above Ground and the Wind Speed (합성(合成)페로몬의 지상(地上)높이별(別) 위치(位置) 및 풍속(風速)에 따른 솔껍질깍지벌레 수컷의 비행(飛行))

  • Park, Seung-Chan;Wi, An-Jin;Kim, Hyung-Sun
    • Journal of Korean Society of Forest Science
    • /
    • v.89 no.1
    • /
    • pp.135-140
    • /
    • 2000
  • Matsucoccus thunbergianae is a major insect pest of Pinus thunbergiana in southern Korean peninsula. To study the flight behavior of M. thunbergianae males responding to the synthetic pheromone, five sticky traps were placed on a bamboo pole at various heights, between 0.1m and 2.0m above ground. A bait impregnated with the synthetic pheromone was placed at 0.1m, 1.0m or 2.0m above ground and the number of male catches on each trap was counted. In an open area, numbers of males caught per trap were not different between heights when the bait was placed at 2m or 1m above ground ; when the bait was placed at 0.1m height, male flight was aggregated near the ground. In a forest with low crown closure, trap catches on five traps on the same bamboo pole were not different one another when the bait was placed at 2m height, but most males were flying near the bait when it was placed at 1m height. In a dense pine forest, most males were flying around the bait regardless of the bait position. In all three places, most males were caught on the trap near the ground when the baits were placed 0.1m above ground. Thus, for monitoring the frontal zone of infestation of the scale, placing the pheromone trap near the ground was considered the most efficient. When the males perceived pheromone, they tended to fly in the air with low wind speed.

  • PDF

Fire Safety Analysis of Fire Suppression System for Aircraft Maintenance Hangar Using Fault Tree Method (Fault Tree를 활용한 항공기 격납고 소화시스템의 화재 안전성 분석)

  • Lee, Jong-Guk
    • Fire Science and Engineering
    • /
    • v.31 no.6
    • /
    • pp.67-73
    • /
    • 2017
  • An aircraft maintenance hangar is a building that stores, maintains, and inspects expensive aircraft. The frequency of fire occurrence is low, but the resulting human and material damage can be very serious. Therefore, in this study, we conducted a qualitative analysis of the fire safety of the currently operating fire suppression systems for aircraft maintenance hangars using the Fault Tree method, and then performed a quantitative analysis using the failure rate data for the derived basic events and analyzed the importance of the minimal cut sets. As a result of the qualitative analysis by the minimal cut set, it was found that there were 14 accident paths that could be expanded to a large fire, due to the fire control failure of the aircraft hangar fire suppression system. The quantitative analysis revealed that, the probability of the fire expanding into a large one is $2.08{\times}E-05/day$. The analysis of the importance of the minimal cut set shows that four minimal cut sets, namely the fire detector and foam head action according to the zone and blocking of the foam by the aircraft wing and the fire plume, had the same likelihood of causing the fire to develop into a large one, viz. 24.95% each, which together forms the majority of the likelihood. It was confirmed for the first time by fault tree method that the fire suppression system of aircraft maintenance hangars is not suitable for fires under the aircraft wings and needs to be improved.

Experimental Performance Evaluation of a Fire System for Apartment Buildings (공동주택 전용화재시스템의 성능평가를 위한 실험적 연구)

  • Jung, Jong-Jin;Hong, A-Reum;Son, Bong-Sei
    • Fire Science and Engineering
    • /
    • v.29 no.6
    • /
    • pp.51-56
    • /
    • 2015
  • In Korea, measures to maintain sustainable fire safety performance for apartment buildings are insufficient in terms of fire-fighting products, skilled personnel, and maintenance status. Also, because of the particular features of a fire compartment, it has structural problems that are very likely to cause damage to human life when a fire occurs. Currently, problems with the fire supervisory system installed in an apartment building cannot be checked in real time, so it is difficult to identify the location of a fire accurately. Protected areas are also not assigned to each household, and residents cannot be clearly informed of the occurrence of a fire. As a consequence, safety evacuation cannot be secured. In addition, it is impossible to test the operation performance for water detectors in sprinkler fire extinguishing systems outside of the household. Therefore, an experiment was conducted to evaluate the performance of a remote fire supervisory system. The results show that the system satisfies all performance requirements. Also, an household alarm system was installed in each household to alert of any occurrence of a fire accurately, and the performance of the alarm system was improved to ensure that residents were quickly evacuated.

Analysis of extreme wind speed and precipitation using copula (코플라함수를 이용한 극단치 강풍과 강수 분석)

  • Kwon, Taeyong;Yoon, Sanghoo
    • Journal of the Korean Data and Information Science Society
    • /
    • v.28 no.4
    • /
    • pp.797-810
    • /
    • 2017
  • The Korean peninsula is exposed to typhoons every year. Typhoons cause huge socioeconomic damage because tropical cyclones tend to occur with strong winds and heavy precipitation. In order to understand the complex dependence structure between strong winds and heavy precipitation, the copula links a set of univariate distributions to a multivariate distribution and has been actively studied in the field of hydrology. In this study, we carried out analysis using data of wind speed and precipitation collected from the weather stations in Busan and Jeju. Log-Normal, Gamma, and Weibull distributions were considered to explain marginal distributions of the copula. Kolmogorov-Smirnov, Cramer-von-Mises, and Anderson-Darling test statistics were employed for testing the goodness-of-fit of marginal distribution. Observed pseudo data were calculated through inverse transformation method for establishing the copula. Elliptical, archimedean, and extreme copula were considered to explain the dependence structure between strong winds and heavy precipitation. In selecting the best copula, we employed the Cramer-von-Mises test and cross-validation. In Busan, precipitation according to average wind speed followed t copula and precipitation just as maximum wind speed adopted Clayton copula. In Jeju, precipitation according to maximum wind speed complied Normal copula and average wind speed as stated in precipitation followed Frank copula and maximum wind speed according to precipitation observed Husler-Reiss copula.

Analysis of the differences in living population changes and regional responses by COVID-19 outbreak in Seoul (코로나-19에 따른 서울시 생활인구 변화와 동별 반응 차이 분석)

  • Jin, Juhae;Seong, Byeongchan
    • The Korean Journal of Applied Statistics
    • /
    • v.33 no.6
    • /
    • pp.697-712
    • /
    • 2020
  • New infectious diseases have broken out repeatedly across the world over the last 20 years; COVID-19 is causing drastic changes and damage to daily lives. Furthermore, as there is no denying that new epidemics will appear in the future, there is a continuous need to develop measures aimed towards responding to economic damage. Against this backdrop, the living population is an important indicator that shows changes in citizens' life patterns. This study analyzes time-based and socio-environmental characteristics by detecting and classifying changes in everyday life caused by COVID-19 from the perspective of the floating population. k-shape Clustering is used to classify living population data of each of the 424 dong's in Seoul measured by the hour; then by applying intervention analysis and One-way ANOVA, each cluster's characteristics and aspects of change in the living population occurring in the aftermath of COVID-19 are scrutinized. In conclusion, this study confirms each cluster's obvious characteristics in changes of population flows before and after the confirmation of coronavirus patients and distinguishes groups that reacted sensitively to the intervention times on the basis of COVID-related incidents from those that did not.

Analyzing Driving Behavior, Road Sign Attentiveness and Recognition with Eye Tracking Data (운전자 시각행태 및 주행행태 분석기반의 결빙주의표지 개발연구)

  • Lee, Ghang Shin;Lee, Dong Min;Hwang, Soon Cheon;Kwon, Wan Taeg
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.20 no.6
    • /
    • pp.117-132
    • /
    • 2021
  • Due to the terrain in Korea, there are many road sections passing through mountainous areas. During the winter, there is a higher risk of traffic accidents, due to black ice caused by the lack of sunlight. Despite domestic road freezing safety measures, accidents caused by road freezing results in severe traffic accidents. Under these considerations, this study analyzed whether traffic safety signs that change in response to the external temperature help drivers recognize frozen road segments. The study was conducted through analysis of the effect of the signs on a driver's perspective. For the signs under development, out of the signs designed by experts, the sign design which received the highest visibility and effectiveness evaluation ratings from the general public was selected. The sign was implemented through Virtual Reality (VR) and installed on the right side of the road to analyze the effect on gazing and driving behavior. As a result of analyzing the driver's driving behavior, a speed reduction of about 7km/h or more was found in the sign section. Therefore, It was found that the existence of the sign had a strong relationship with the rate of the drivers' speed reduction.

A Study on the Factors Affecting the Intention of Chinese Users to Discriminate Against Fake News on Social Media - Focusing on attitude, social capital, and risk detection - (중국 이용자 소셜미디어 가짜뉴스 판별의도에 미치는 요인에 관한 연구 -태도, 사회자본, 위험감지를 중심으로-)

  • Tan, KeHong;Lee, Hwa Haeng
    • The Journal of the Korea Contents Association
    • /
    • v.22 no.4
    • /
    • pp.337-351
    • /
    • 2022
  • With the full spread and rapid development of social media, the trend of decentralization of social media information propagation is becoming clearer day by day, and the segmentation of time by audiences using social media information is clearly progressing. Therefore, this study aims to study the influence relationship between social media attitudes toward fake news, social capital, risk perception, and discriminant intentions based on existing studies. Accordingly, the research model presented related research questions and organized a questionnaire to collect a total of 500 valid surveys. The SPSS 26.0 program and the AMOS 24.0 program were used to analyze the data. The research results are as follows. First, the more positive the user's attitude towards the fake news identification intention of social media, the more they want to use various methods or tools to identify the authenticity of online information. Second, the more positive the user's attitude towards social media fake news, the more aware of the potential threats social media fake news poses to their own physical, psychological, financial and so on. At the same time, by raising one's own awareness of the dangers, counterintelligence intentions against fake news on social media will also increase. Third, the richer the social capital the user has, the stronger the information literacy, and therefore the stronger the identification intention of social media fake news. Fourth, the higher the value of social capital Chinese users have, the greater the damage they have suffered from fake news, and the higher the risk awareness of fake news to protect their interests. Fifth, it means that Chinese users recognized information suspected of social media and took corresponding measures.

A LiDAR-based Visual Sensor System for Automatic Mooring of a Ship (선박 자동계류를 위한 LiDAR기반 시각센서 시스템 개발)

  • Kim, Jin-Man;Nam, Taek-Kun;Kim, Heon-Hui
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.6
    • /
    • pp.1036-1043
    • /
    • 2022
  • This paper discusses about the development of a visual sensor that can be installed in an automatic mooring device to detect the berthing condition of a vessel. Despite controlling the ship's speed and confirming its location to prevent accidents while berthing a vessel, ship collision occurs at the pier every year, causing great economic and environmental damage. Therefore, it is important to develop a visual system that can quickly obtain the information on the speed and location of the vessel to ensure safety of the berthing vessel. In this study, a visual sensor was developed to observe a ship through an image while berthing, and to properly check the ship's status according to the surrounding environment. To obtain the adequacy of the visual sensor to be developed, the sensor characteristics were analyzed in terms of information provided from the existing sensors, that is, detection range, real-timeness, accuracy, and precision. Based on these analysis data, we developed a 3D visual module that can acquire information on objects in real time by conducting conceptual designs of LiDAR (Light Detection And Ranging) type 3D visual system, driving mechanism, and position and force controller for motion tilting system. Finally, performance evaluation of the control system and scan speed test were executed, and the effectiveness of the developed system was confirmed through experiments.

Detection of Signs of Hostile Cyber Activity against External Networks based on Autoencoder (오토인코더 기반의 외부망 적대적 사이버 활동 징후 감지)

  • Park, Hansol;Kim, Kookjin;Jeong, Jaeyeong;Jang, jisu;Youn, Jaepil;Shin, Dongkyoo
    • Journal of Internet Computing and Services
    • /
    • v.23 no.6
    • /
    • pp.39-48
    • /
    • 2022
  • Cyberattacks around the world continue to increase, and their damage extends beyond government facilities and affects civilians. These issues emphasized the importance of developing a system that can identify and detect cyber anomalies early. As above, in order to effectively identify cyber anomalies, several studies have been conducted to learn BGP (Border Gateway Protocol) data through a machine learning model and identify them as anomalies. However, BGP data is unbalanced data in which abnormal data is less than normal data. This causes the model to have a learning biased result, reducing the reliability of the result. In addition, there is a limit in that security personnel cannot recognize the cyber situation as a typical result of machine learning in an actual cyber situation. Therefore, in this paper, we investigate BGP (Border Gateway Protocol) that keeps network records around the world and solve the problem of unbalanced data by using SMOTE. After that, assuming a cyber range situation, an autoencoder classifies cyber anomalies and visualizes the classified data. By learning the pattern of normal data, the performance of classifying abnormal data with 92.4% accuracy was derived, and the auxiliary index also showed 90% performance, ensuring reliability of the results. In addition, it is expected to be able to effectively defend against cyber attacks because it is possible to effectively recognize the situation by visualizing the congested cyber space.

Prediction System for Turbidity Exclusion in Imha Reservoir (임하호 탁수 대응을 위한 예측 시스템)

  • Jeong, Seokil;Choi, Hyun Gu;Kim, Hwa Yeong;Lim, Tae Hwan
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.487-487
    • /
    • 2021
  • 탁수는 유기물 또는 무기물이 유입되면서 빛의 투과성이 낮아진 수체를 의미한다. 탁수가 발생하게 되면 어류의 폐사, 정수처리 비용의 증가 및 경관의 변화로 인한 피해가 발생하게 된다. 국내에서는 홍수기 또는 태풍 시 유역의 토사가 저수지 상류에서 유입하여 호내의 탁수를 발생시키는 경우가 있는데, 특히 낙동강 유역의 임하호에서 빈번하게 고탁수가 발생하여 왔다. 본 연구에서는 임하호에서 탁수 발생 시 신속 배제를 위한 수치적인 예측 시스템을 소개하고자 한다. 저수지 탁수관리의 기본개념은 용수공급능력을 고려한 고탁수의 신속한 배제이다. 이는 선제적 의사결정을 요구하므로, 지류에서 탁수가 발생한 즉시 향후 상황에 대한 예측이 필요하다. 이러한 예측을 위해 유역관리처는 3단계의 수치해석을 수행한다. 첫 번째는 유역 상류에서 탁수가 감지되었을 때, 호 내 탁수의 분포를 예측하는 것이다. 수심 및 수평방향의 탁수 분포에 대한 상세한 결과가 도출되어야 하기에, 3차원 수치해석 프로그램인 AEM3D를 이용한다. 이때, 과거 고탁수 유입에 대한 자료를 기반으로 산정된 매개변수가 적용된다. 두 번째는 예측된 호내 분포를 초기조건으로 댐 방류량 및 취수탑 위치(선택배제)에 따른 탁수 배제 수치해석을 수행하게 된다. 다양하고 많은 case에 대한 신속한 모의 및 3달 이상의 장기간 예측을 요구하므로, 2차원 수치모델인 CE-QUAL-W2를 활용한다. 이 단계에서 수자원의 안정적 공급이 가능한 범위 내에서 효과적인 탁수 배제 방류 방법 등이 결정되며, 방류 탁도가 예측된다. 세 번째 단계는 방류탁도를 경계조건으로 하여 하류 하천(반변천~내성천 합류 전)의 탁도를 예측하는 것이다. 하천의 탁도 예측은 국내뿐만 아니라 국외에서도 그 사례를 찾아보기가 쉽지 않은데, 이는 중소형의 지류에 대한 입력자료가 충분하지 않고 불확실성이 높기 때문이다. 이에 과거 10여 년의 data를 이용한 회귀분석을 통해 탁수 발생물질(SS)-부유사-유량과의 관계를 도출하고, 2차원 하천모델(EFDC)을 이용하여 수심 평균 탁도를 예측하게 된다. 이러한 세 단계의 예측은 탁수가 호내로 유입됨에 따라 반복되고, 점차 예측 정확도가 향상되게 된다. 세 단계의 과정을 통한 임하호 탁수의 조기 배제는 현재 적지 않은 효과를 거두고 있다고 판단된다. 그러나 탁수를 발생시키는 현탁물질의 종류는 매번 일정하지 않기 때문에, 이러한 예측 시스템에 정확도에 영향을 줄 수 있으므로, 여러 상황을 고려한 딥러닝을 도입하여 탁수 물질에 대한 정보를 예측한다면 보다 합리적인 의사결정 지원 도구가 될 수 있을 것이다.

  • PDF