• Title/Summary/Keyword: 피치운동

Search Result 69, Processing Time 0.024 seconds

The Effect of Pelvic Inclination on Voice Production in sitting (앉은 자세에서 골반 경사도가 음성에 미치는 영향)

  • Choe, Jeong Hui
    • The Journal of the Convergence on Culture Technology
    • /
    • v.1 no.2
    • /
    • pp.91-95
    • /
    • 2015
  • The purpose of this study was to evaluate the difference voice production, according to the pelvic inclination while in the sitting position. Measure the sound produced(pitch) in three positions with the Praat program. position: anterior tilt position, posterior tilt position, neutral position(seat surface tilted 15 degrees). We found that the mean values of pitch were statistically significant different according to three types of sitting positions (p<0.05). The following result was observed: anterior tilt position > posterior tilt position > neutral position. There was significant difference in the neutral position. This finding suggests that the seat surface inclinations have an effect on speech production. Especially, neutral position may be an effective posture that may help increases the speech production.

Research for effective accelerometer signal processing to detect the falling activity (낙상 검출을 위한 가속도 센서의 효율적인 신호처리 기법 연구)

  • Lee, Young-Jae;Lee, Pil-Jae;Yang, Heui-Kyung;Kim, Choong-Hyun;Lee, Jeong-Whan
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1794-1795
    • /
    • 2011
  • 본 연구에서는 가속도 센서의 값을 디지털 신호 처리 과정을 통하여 저역통과 필터(low pass filter), 벡터의 크기(vector magnitude), 롤(roll) 그리고 피치(pitch)를 계산하는 알고리즘을 적용하였다. 필터의 경우 IIR(Infinite Impulse Response)을 이용하였으며 차수는 9차로 하였다. 피험자의 연령은 $25{\pm}5$세의 10명을 기준으로 실험하였으며 앞, 뒤, 좌, 우 방향으로 직각 낙하하도록 하였고 센서 모듈은 오른쪽 허리의 정중앙에 착용하도록 하여 피험자간의 오차가 발생하지 않도록 하였다. 환자의 낙상을 검출하기 위해서 벡터의 크기를 사용하였고 롤과 피치를 이용하여 환자의 낙상 방향을 검출하였다. 결과적으로 피험자 10명의 경우 낙상의 검출률은 100% 였으며 낙상 방향에 따른 앞, 뒤, 좌, 우 판별 정확도는 95% 정도이다. 낙상 방향의 판별은 사고 후 환자를 다룰 때의 주의할 신체부위를 참고하며 재활 운동 시 하체의 어느 쪽이 낙상의 주요인인지 분석하는 보조 자료가 될 수 있다.

  • PDF

PIV Analysis of Flow around a Submerged Pitch Damping Foil (몰수형 피치댐핑포일 주위 유동의 PIV 해석)

  • Gim, Ok-Sok;Lee, Gyoung-Woo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.49 no.5
    • /
    • pp.410-415
    • /
    • 2012
  • An experimental study is carried out to investigate the near-wake characteristics of a NACA 0018 foil with a flat plate. Two-frame grey-level cross correlation PIV method is used to measure the local flow characteristic around a pitch damping foil to control the vertical motion of high speed crafts in a circulating water channel. The analysis also includes angles of attack 10 and 20 degrees respectively. Reynolds number $Re{\fallingdotseq}3.5{\times}10^4$ based on the chord length(C=100mm) of NACA0018 has been applied during the whole experiments. The distance between the foil and the flat plate is D/C=0.5, 1.0 and 1.5 respectively. The channel effect according as the distance between the foil and the flat plate has a close relation with the velocity distributions around the foil. In the wake of 20-degree of attack, the complex turbulent flow and a thick boundary layer are formed due to the processes of vortex generation and dissipation.

Force Characteristic Analysis of Airflow Type Linear Pulse Mortor by Permeance Method (패미언스법에 의한 공압 부상형 리니어 펄스모터의 힘 특성 해석)

  • 김일남;백수현;윤신용
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.13 no.4
    • /
    • pp.160-169
    • /
    • 1999
  • Linear pulse rootor (LPM) be suitable a field where smooth linear rootion of high precision is required, because it's structured with minute teeth pitch in airgap of between and stator and roover(forcer). Force and position of LPM are effected sensitively by the teeth pitch, air gap, permanent magnet and excitation current. So, LPM is much important to analyze the force characteristics. llis paper was awlied to perrreance roothed for force calculation at airgap. The airgap of LPM is maintained from the pressure generated by an air-bearing. Simplified airflow and permeance methods will be used to calculate the air gap under static conditions. Therefore, the maximum available force is then derived using the coenergy method with variable air gap, also normal force and linear thrust was acquired from variable minute displacement 1[mm]. 1[mm].

  • PDF

Development of the Precise Multi-Position Alignment Method using a Pitch Motion (피치운동을 이용한 정밀 다위치 정렬기법 개발)

  • Lee, Jung-Shin
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.4
    • /
    • pp.708-715
    • /
    • 2010
  • In Strapdown Inertial Navigation System, alignment accuracy is the most important factor to determine the performance of navigation. However by an existing self-alignment method, it takes a long time to acquire the alignment accuracy that we want. So, to attain the desired alignment accuracy in as little as $\bigcirc$ minutes, we have developed the precise multi-position alignment method. In this paper, it is proposed a inertial measurement matching transfer alignment method among alignment methods to minimize the alignment error in a short time. It is based on a mixed velocity-DCM matching method be suitable to the operating environment of vertical launching system. The compensation methods to reduce misalign error, especially azimuth angle error incurred by measurement time-delay error and body flexure error are analyzed and evaluated with simulation. This simulation results are finally confirmed by experimentations using FMS(Flight Motion Simulator) in Lab and the integration test to follow the fire control mission.

Vibration Analysis of a Bogie Using Linearized Dynamic Equations of a Multibody System (다물체계의 선형 동역학식을 이용한 대차의 진동 해석)

  • Kang, Juseok
    • Journal of the Korean Society for Railway
    • /
    • v.17 no.5
    • /
    • pp.321-327
    • /
    • 2014
  • In this paper, linear dynamic equations are derived from nonlinear dynamic equations of constrained multibody systems using the QR decomposition method. The derived linear equations are applied to a railway vehicle bogie. The vibration characteristics of the railway vehicle are investigated by calculating the natural mode and transfer function of the bogie frame in relation to rail-roughness input. The main modes of the bogie were found below 35Hz, and the local modes above 198Hz. The magnitude of the vertical transfer function varied with the forward velocity due to vertical and pitch modes, which were influenced by the forward velocity. The magnitude of the lateral transfer function was negligibly small, and the mode in the longitudinal direction was excited for longitudinal transfer function regardless of the forward velocity.

Helicopter Pilot Metaphor for 3D Space Navigation and its implementation using a Joystick (3차원 공간 탐색을 위한 헬리콥터 조종사 메타포어와 그 구현)

  • Kim, Young-Kyoung;Jung, Moon-Ryul;Paik, Doowon;Kim, Dong-Hyun
    • Journal of the Korea Computer Graphics Society
    • /
    • v.3 no.1
    • /
    • pp.57-67
    • /
    • 1997
  • The navigation of virtual space comes down to the manipulation of the virtual camera. The movement of the virtual cameras has 6 degrees of freedom. However, input devices such as mouses and joysticks are 2D. So, the movement of the camera that corresponds to the input device is 2D movement at the given moment. Therefore, the 3D movement of the camera can be implemented by means of the combination of 2D and 1D movements of the camera. Many of the virtual space navigation browser use several navigation modes to solve this problem. But, the criteria for distinguishing different modes are not clear, somed of the manipulations in each mode are repeated in other modes, and the kinesthetic correspondence of the input devices is often confusing. Hence the user has difficulty in making correct decisions when navigating the virtual space. To solve this problem, we use a single navigation metaphore in which different modes are organically integrated. In this paper we propose a helicopter pilot metaphor. Using the helicopter pilot metaphore means that the user navigates the virtual space like a pilot of a helicopter flying in space. In this paper, we distinguished six 2D movement spaces of the helicopter: (1) the movement on the horizontal plane, (2) the movement on the vertical plane,k (3) the pitch and yaw rotations about the current position, (4) the roll and pitch rotations about the current position, (5) the horizontal and vertical turning, and (6) the rotation about the target object. The six 3D movement spaces are visualized and displayed as a sequence of auxiliary windows. The user can select the desired movement space simply by jumping from one window to another. The user can select the desired movement by looking at the displaced 2D movement spaces. The movement of the camera in each movement space is controlled by the usual movements of the joystick.

  • PDF

Numerical Model of Propulsive Behavior of a Rotating Spring in Viscous Fluid (점성유체 중에 회전하는 스프링의 추진적 거동에 관한 수치해석 모델)

  • Choi, Won Yeol;Suh, Yong Kweon;Kang, Sangmo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.6
    • /
    • pp.497-504
    • /
    • 2015
  • In this paper, we study the propulsive behavior related to the flagellar motion of bacteria using a spring model. A commercial program was used to conduct simulations, and we verified the numerical technique by setting an additional rotating domain and conducting a parametric study. The numerical results are in good agreement with slender-body theory, although overall, they are not in agreement with resistive-force theory. We confirm the effect of the rotational velocity, pitch, helical radius, fluid viscosity, and, in particular, the distance from the wall on the propulsion of the spring.

A Parallel Kalman Filter for Estimation of Magnetic Disturbance and Orientation Based on Nine-axis Inertial/Magnetic Sensor Signals (9축 관성/자기센서를 이용한 자기교란 및 자세 추정용 병렬 칼만필터)

  • Lee, Jung Keun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.7
    • /
    • pp.659-666
    • /
    • 2016
  • Magnetic disturbance is one of the main factors that deteriorate the accuracy of orientation estimation methods based on inertial/magnetic sensor signals. This paper proposes a parallel Kalman filter(KF) that explicitly detects magnetic disturbances and thus can accurately estimate 3D orientation in magnetically disturbed environments. Due to the parallel nature of the proposed KF, even severe magnetic disturbances only affect yaw estimation, while roll and pitch values remain accurate. Consequently, the proposed KF can be effectively used in various applications that involve magnetically inhomogeneous environments, such as robots, ships, and planes.

Study on Correlation of Outsole Pattern of Sports Shoes and Frictional Coefficient (운동화 바닥창 무늬형태와 마찰계수의 상관관계 연구)

  • Lee, Jong-Nyun
    • Korean Journal of Applied Biomechanics
    • /
    • v.18 no.3
    • /
    • pp.1-10
    • /
    • 2008
  • One of the major factors affecting maneuverability of an athlete is frictional force caused at an outsole of his shoe. The magnitude of the frictional force is closely related to pattern and hardness of outsole and roughness of ground or floor. This study then focuses on the effect of outsole pattern of sports shoes on the frictional force. After surveying outsole patterns of sports shoes in markets, we select 4 types of outsole patterns, such as straight, W, O, and wave as primary outsole patterns of sports shoe and we also select depth, pitch and slope as design parameters of each pattern. Corresponding to those patterns and design parameters, various outsole specimen are prepared for frictional experiments. After performing frictional tests with those specimen, coefficients of friction(COF) are collected and analyzed with a statistical tool to draw useful conclusion.