• Title/Summary/Keyword: 피쳐기반 모델

Search Result 20, Processing Time 0.03 seconds

Voice Activity Detection Using Global Speech Absence Probability Based on Teager Energy in Noisy Environments (잡음환경에서 Teager Energy 기반의 전역 음성부재확률을 이용하는 음성검출)

  • Park, Yun-Sik;Lee, Sang-Min
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.49 no.1
    • /
    • pp.97-103
    • /
    • 2012
  • In this paper, we propose a novel voice activity detection (VAD) algorithm to effectively distinguish speech from nonspeech in various noisy environments. Global speech absence probability (GSAP) derived from likelihood ratio (LR) based on the statistical model is widely used as the feature parameter for VAD. However, the feature parameter based on conventional GSAP is not sufficient to distinguish speech from noise at low SNRs (signal-to-noise ratios). The presented VAD algorithm utilizes GSAP based on Teager energy (TE) as the feature parameter to provide the improved performance of decision for speech segments in noisy environment. Performances of the proposed VAD algorithm are evaluated by objective test under various environments and better results compared with the conventional methods are obtained.

Development of Java/VRML-based 3D GIS's Framework and Its Prototype Model (Java/VRML기반 3차원 GIS의 기본 구조와 프로토타입 모델 개발)

  • Kim, Kyong-Ho;Lee, Ki-Won;Lee, Jong-Hun
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.6 no.1 s.11
    • /
    • pp.11-17
    • /
    • 1998
  • Recently, 3D GIS based on 3D geo-processing methodology and Internet environment are emerging issues in GIS fields. To design and implement 3D GIS, the strategic linkage of Java and VRML is first regarded: 3D feature format definition in the passion of conventional GIS including aspatial attributes, 3B feature indexing, 3D analytical operators such as selection, buffering, and Near, Metric operation such as distance measurement and statistical description, and 3D visualization. In 3D feature format definition, the following aspects are implemented: spatial information for 3D primitives extended from 2D primitives, multimedia data, object texture or color of VRML specification. DXF-format GIS layers with additional attributes are converted to 3D feature format and imported into this system. While, 3D analytical operators are realized in the form of 3D buffering with respect to user-defined point, line, polygon, and 3D objects, and 3D Near functions; furthermore, 'Lantern operator' is newly introduced in this 3D GIS. Because this system is implemented by Java applet, any client with Java-enable browser including VRML browser plug-in can utilize the new style of 3D GIS function in the virtual space. Conclusively, we present prototype of WWW-based 3D GIS, and this approach will be contribute to development of core modules on the stage of concept establishment and of real application model in future.

  • PDF

A Study on Machine Learning model for detection of DoS Attack (IP카메라의 DoS 공격 탐지 머신러닝 모델에 대한 연구)

  • Jung, Woong-Kyo;Kim, Dong-Young;Kwak, Byung Il
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2022.11a
    • /
    • pp.709-711
    • /
    • 2022
  • ICT 기술의 빠른 발전과 함께 Internet of Things (IoT) 환경에서의 Internet Protocol (IP) 카메라의 사용률이 증가하면서, IP 카메라에 대한 개인정보 이슈와 제품의 보안성 검토 관련 소비자의 개인정보 유출 우려가 증가하고 있다. 본 논문에서는, IP 카메라에 대한 4개 종류의 Denial of Service (DoS) 공격을 통해 IP 카메라 이상 반응을 확인했다. 또한, 이 과정에서 수집한 공격 패킷 데이터를 기반으로, DoS 공격을 탐지하는 간단한 피쳐 구성과 머신러닝 모델을 제안하였다. 최종적으로, DoS 공격을 통해 실제 IP 카메라에 대한 가용성 테스트를 수행하였으며 머신러닝 알고리즘 4개 Decision Tree, Random Forest, Multilayer Perceptron, SVM에서의 DoS 공격 탐지 성능을 비교하였다.

Development of a Prototype S-100 Data Model (프로토타입 해사데이터 모델 개발)

  • Kang, Namseon;Son, Gumjun;Jeong, Yujun;Kim, Hyejin
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.5
    • /
    • pp.527-536
    • /
    • 2018
  • In this paper, we developed a prototype model accident management SMART-Navigation project. In order to develop a prototype model, we analyzed the status of maritime data exchange standard and procedure. We developed accident management prototype application schema, feature catalog and portrayal catalog in accordance with S-100 standard data model development procedure by collecting requirements related services and referring to related standards. In order to verify accident management prototype model, we test data set based on Gwang-yang Port. The prototype model and test data verified verification software, and it was confirmed that the designated symbol was displayed at the correct position through the S-100 simple viewer.

Parameter-Efficient Multi-Modal Highlight Detection via Prompting (Prompting 기반 매개변수 효율적인 멀티 모달 영상 하이라이트 검출 연구)

  • DongHoon Han;Seong-Uk Nam;Eunhwan Park;Nojun Kwak
    • Annual Conference on Human and Language Technology
    • /
    • 2023.10a
    • /
    • pp.372-376
    • /
    • 2023
  • 본 연구에서는 비디오 하이라이트 검출 및 장면 추출을 위한 경량화된 모델인 Visual Context Learner (VCL)을 제안한다. 기존 연구에서는 매개변수가 고정된 CLIP을 비롯한 여러 피쳐 추출기에 학습 가능한 DETR과 같은 트랜스포머를 이어붙여서 학습을 한다. 하지만 본 연구는 경량화된 구조로 하이라이트 검출 성능을 개선시킬 수 있음을 보인다. 그리고 해당 형태로 장면 추출도 가능함을 보이며 장면 추출의 추가 연구 가능성을 시사한다. VCL은 매개변수가 고정된 CLIP에 학습가능한 프롬프트와 MLP로 하이라이트 검출과 장면 추출을 진행한다. 총 2,141개의 학습가능한 매개변수를 사용하여 하이라이트 검출의 HIT@1(>=Very Good) 성능을 기존 CLIP보다 2.71% 개선된 성능과 최소한의 장면 추출 성능을 보인다.

  • PDF

Attention Network For Click-through Rate Prediction Based On MovieLens-1M, Avazu4, Criteo Datasets (MovieLens-1M, Avazu4, Criteo 데이터셋에 기반한 클릭률 예측을 위한 어텐션 네트워크)

  • Zijian An;Inwhee Joe
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.11a
    • /
    • pp.522-523
    • /
    • 2023
  • CTR(Click Through Rate) 예측은 사용자가 광고나 아이템을 클릭할 확률을 예측하는 데 사용되는 용어로, 광고 분야에서 중요한 연구 분야로 자리 잡았다. 인터넷 데이터의 양이 증가함에 따라, 전통적인 피쳐 엔지니어링의 인건비는 계속해서 상승하고 있다. 특징 상호 작용에 대한 의존도를 줄이기 위해, 본 논문은 TMH(Two-Tower Multi-Headed Attention Neural Network) 접근법이라고 하는 명시적인 특징 상호 작용과 암시적인 특징 상호 작용을 결합한 융합 모델을 제안한다. CTR 예측에서 TMH 의 효과를 평가하기 위해 3 개의 실제 데이터 세트를 사용하여 많은 수의 실험을 수행하였다. 성능은 3 개의 데이터 세트에서 0.12%, 0.41% 및 0.68%으로 향상되었다.

Light weight architecture for acoustic scene classification (음향 장면 분류를 위한 경량화 모형 연구)

  • Lim, Soyoung;Kwak, Il-Youp
    • The Korean Journal of Applied Statistics
    • /
    • v.34 no.6
    • /
    • pp.979-993
    • /
    • 2021
  • Acoustic scene classification (ASC) categorizes an audio file based on the environment in which it has been recorded. This has long been studied in the detection and classification of acoustic scenes and events (DCASE). In this study, we considered the problem that ASC faces in real-world applications that the model used should have low-complexity. We compared several models that apply light-weight techniques. First, a base CNN model was proposed using log mel-spectrogram, deltas, and delta-deltas features. Second, depthwise separable convolution, linear bottleneck inverted residual block was applied to the convolutional layer, and Quantization was applied to the models to develop a low-complexity model. The model considering low-complexity was similar or slightly inferior to the performance of the base model, but the model size was significantly reduced from 503 KB to 42.76 KB.

3D-GIS Network Modeling for Optimal Path Finding in Indoor Spaces (건물 내부공간의 최적경로 탐색을 위한 3차원 GIS 네트워크 모델링)

  • Park, In-Hye;Jun, Chul-Min;Choi, Yoon-Soo
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.15 no.3
    • /
    • pp.27-32
    • /
    • 2007
  • 3D based information is demanded increasingly as cities grow three dimensionally and buildings become large and complex. The use of 3D GIS is also getting attention as fundamental data for ubiquitous computing applications such as location-based guidance, path finding and emergency escaping. However, most 3D modeling techniques are focused on the visualization of buildings or terrains and do not have topological structures required in spatial analyses. In this paper, we introduce a method to incorporate topological relationship into 3D models by combining 2D GIS layers and 3D model. We divide indoor spaces of a 3D model into discrete objects and then define the relationship with corresponding features in 2D GIS layers through database records. We also show how to construct hallways network in the 2D-3D integrated building model. Finally, we test different cases of route finding situations inside a building such as normal origin-destination path finding and emergency evacuation.

  • PDF

Analysis and Prediction of (Ultra) Air Pollution based on Meteorological Data and Atmospheric Environment Data (기상 데이터와 대기 환경 데이터 기반 (초)미세먼지 분석과 예측)

  • Park, Hong-Jin
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.14 no.4
    • /
    • pp.328-337
    • /
    • 2021
  • Air pollution, which is a class 1 carcinogen, such as asbestos and benzene, is the cause of various diseases. The spread of ultra-air pollution is one of the important causes of the spread of the corona virus. This paper analyzes and predicts fine dust and ultra-air pollution from 2015 to 2019 based on weather data such as average temperature, precipitation, and average wind speed in Seoul and atmospheric environment data such as SO2, NO2, and O3. Linear regression, SVM, and ensemble models among machine learning models were compared and analyzed to predict fine dust by grasping and analyzing the status of air pollution and ultra-air pollution by season and month. In addition, important features(attributes) that affect the generation of fine dust and ultra-air pollution are identified. The highest ultra-air pollution was found in March, and the lowest ultra-air pollution was observed from August to September. In the case of meteorological data, the data that has the most influence on ultra-air pollution is average temperature, and in the case of meteorological data and atmospheric environment data, NO2 has the greatest effect on ultra-air pollution generation.

VRIFA: A Prediction and Nonlinear SVM Visualization Tool using LRBF kernel and Nomogram (VRIFA: LRBF 커널과 Nomogram을 이용한 예측 및 비선형 SVM 시각화도구)

  • Kim, Sung-Chul;Yu, Hwan-Jo
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.5
    • /
    • pp.722-729
    • /
    • 2010
  • Prediction problems are widely used in medical domains. For example, computer aided diagnosis or prognosis is a key component in a CDSS (Clinical Decision Support System). SVMs with nonlinear kernels like RBF kernels, have shown superior accuracy in prediction problems. However, they are not preferred by physicians for medical prediction problems because nonlinear SVMs are difficult to visualize, thus it is hard to provide intuitive interpretation of prediction results to physicians. Nomogram was proposed to visualize SVM classification models. However, it cannot visualize nonlinear SVM models. Localized Radial Basis Function (LRBF) was proposed which shows comparable accuracy as the RBF kernel while the LRBF kernel is easier to interpret since it can be linearly decomposed. This paper presents a new tool named VRIFA, which integrates the nomogram and LRBF kernel to provide users with an interactive visualization of nonlinear SVM models, VRIFA visualizes the internal structure of nonlinear SVM models showing the effect of each feature, the magnitude of the effect, and the change at the prediction output. VRIFA also performs nomogram-based feature selection while training a model in order to remove noise or redundant features and improve the prediction accuracy. The area under the ROC curve (AUC) can be used to evaluate the prediction result when the data set is highly imbalanced. The tool can be used by biomedical researchers for computer-aided diagnosis and risk factor analysis for diseases.