• Title/Summary/Keyword: 피질 두께

Search Result 172, Processing Time 0.032 seconds

Electron Microscopic Studies on the Morphological Differences of Ethnic Hair (인종 모발의 형태학적 차이에 관한 전자현미경적 연구)

  • Lee, Gui-Young;Chang, Byung-Soo
    • Applied Microscopy
    • /
    • v.38 no.3
    • /
    • pp.265-273
    • /
    • 2008
  • We investigated the morphological differences of the ethnic hairs using scanning electron microscopy and transmission electron microscopy, sampled from African, Asian and Caucasian women. Transverse section of African hair had a highly elliptical type whereas those of Asian and Caucasian hairs had circular and elliptical types, respectively. The diameter of African hair showed wide variations from 90 to 115 ${\mu}m$. The diameter of Asian hair was 100 ${\mu}m$ and Caucasian hair had a lesser diameter of 80 ${\mu}m$ on average. African hair were much more damaged in cuticle layer compared with Asian or Caucasian hairs. In particular, endocuticle of cuticle cell had a lot of holes in it, which resulted that it tends to be easily broken. Phaeomelanin in the cortex of Caucasian hair had a concentrically helical structure in it.

Immunohistochemical Studies on the Visceral Ganglion and Right Parietal Ganglion of the African Giant Snail, Achatina fulica (아프리카왕달팽이(Achatina fulica) 내장신경절 및 우체벽신경절에 관한 연구 I. 면역조직화학적 방법)

  • 장남섭;김상원;한종민;이광주;황선종
    • The Korean Journal of Malacology
    • /
    • v.16 no.1_2
    • /
    • pp.1-9
    • /
    • 2000
  • The visceral ganglion and the right parietal ganglion of the African giant snail, Achatina fulica, consists of two hemispheres, each in left and right side, respectively, like a butterfly. The surface of cortex and medulla in the two ganglions are crowded with nerve cells, but nerve fibers form a network at the middle portion. The nerve cells in the cortex and medulla of the visceral ganglion and the right parietal ganglion are classified into the following four classes according to their sizes: giant (above 200 ${\mu}{\textrm}{m}$, in diameter), large (60-70 ${\mu}{\textrm}{m}$, in diameter), middle (30-40 ${\mu}{\textrm}{m}$, in diameter) and small (10-15 ${\mu}{\textrm}{m}$, in diameter) nerve cells, respectively. The giant and large nerve cells are rarely found(20-22 eas. in total) while the middle and small nerve cells are found in large quantities (middle: 400-500 eas., small: 700-800 eas.). In the AB/AY double staining, the giant nerve cell is identified as light yellow cells (LYC), while large and middle none cells as dark green cells (DGC) or yellow green cells (YGC), and small nerve cells as yellow cells (YC) or blue cells (BC), The DGC, which reacts positively to somatostatin immunostain reaction, inhibits the secretion of the growth control hormone. The giant and large nerve cells are identified to do the functions of phagocytosis as well as neurosecretion.

  • PDF

The Influence of Negative Emotion to Cortical Activity Induced by Auditory Verbal Imagery in Patients with Schizophrenia (정신분열병 환자에서 부정적 감정이 청각적 언어상상에 의해 유발된 대뇌 피질 활성에 미치는 영향)

  • Lee, Hong-Shick;Kim, Ji-Woong;Kim, Yully
    • Korean Journal of Biological Psychiatry
    • /
    • v.7 no.2
    • /
    • pp.174-179
    • /
    • 2000
  • Objectives : Cognitive psychological models propose that auditory hallucinations arise from a problem with monitoring one's auditory verbal imagery. Most auditory hallucinations are derogatory in content and accompany negative emotions. If auditory verbal imagery plays an critical role in the pathogenesis of auditory hallucination, it must be influenced by negative emotions. This study was aimed at understanding the influence of negative emotions on the development of hallucinations by investigating the way by which negative emotions have influence on cortical activity induced by auditory verbal imagery. Methods : For both normal subjects and patients with schizophrenia, quantitative electroencephalography(Q-EEG) was applied during the auditory verbal imagery tasks using a two word list. The one word list accompanied negative emotion and the other accompanied neutral emotions. The difference of EEG activity between two tasks was compared by paired t-test. We also compare the difference of the influence of negative emotions between normal subjects and patients with schizophrenia Results : In normal subjects, amplitude of beta wave was increased in temporal area such as TCP1, and, the amplitude of theta frequency wave was decreased in right hemisphere such as FP2, F4, C4, CP2, P4. But, in the schizophrenia group, there were no significant differences. Conclusion : These results may suggest that auditory verbal imagery with negative emotion requires more activation in left temporal area, but, appropriate activation may not achieved in schizophrenia patients. So, the possibility that the resultant disturbance of verbal self monitoring may be related to auditory hallucination is suggested in this study.

  • PDF

Activation of Limbic Area due to Oxygen Administration during Visuospatial Task (공간 과제 수행 시 고농도 산소 공급에 의한 변연계 활성화에 관한 연구)

  • Choi, Mi-Hyun;Lee, Su-Jeong;Yang, Jae-Woong;Kim, Ji-Hye;Choi, Jin-Seung;Tack, Gye-Rae;Chung, Soon-Cheol;Kim, Hyun-Jun
    • Science of Emotion and Sensibility
    • /
    • v.12 no.4
    • /
    • pp.443-450
    • /
    • 2009
  • The purpose of this study is to observe activation of limbic system during performing visuospatial tasks by 21% and 30% oxygen administration. Eight right handed male college students were selected as the subjects for this study. A visuospatial task was presented while brain images were scanned by a 3T fMRI system. The experiment consisted of two runs: one was a visuospatial task under normal air(21% oxygen) condition and the other under hyperoxic air(30% oxygen) condition. The neural activations were observed at the limbic system which is seperated 8 regions such as cingulate gyrus, thalamus, limbic lobe, hypothalamus, hippocampus, parahippocampa gyrus, amygdala, and mammiilary body. By two oxygen levels, activation areas of limbic system are almost identical. Increased neural activations were observed in the cingulate gyrus and thalamus with 30% oxygen administration compared to 21% oxygen. During 30% oxygen administration, improvement of visuospatial task performance has a relation to increase of neural activation of subcortical structures such as thalamus and cingulate gyrus as well as cerebral cortex.

  • PDF

A Case Report : TMJ Osteoarthritis in a Patient with Renal Osteodystrophy (턱관절의 골관절염을 동반한 신성골이영양증 환자 증례보고)

  • Lee, Gi-Ho
    • Journal of Oral Medicine and Pain
    • /
    • v.38 no.3
    • /
    • pp.247-253
    • /
    • 2013
  • Renal osteodystrophy(RO) is characterized by skeletal changes in patients with renal disease and developed as a result of alterations in the metabolism of calcium, phosphate and secondary hyperparathyroidism. Bony changes in the craniofacial region include decreased bone density, radiolucent lesions(brown tumors), depletion of cortical bone and loss of lamina dura, but such changes rarely occur in the temporomandibular joint(TMJ). We report an uncommon case of bony changes and pain of both TMJs in a patient with RO. A 41-year-old man with RO came to our clinic due to TMJ pain and sounds. Occlusal change was also reported. Radiographs revealed degenerative changes of the both condyles. The patient had medical history of renal cancer therapy and hemodialysis. The patient was diagnosed with TMJ arthritis of RO and referred for systemic management through medication of calcium and vitamin D and parathyroidectomy. At 15-month follow-up, most of TMD symptoms disappeared and second radiographs revealed that bone density and cortical thickness of the mandible increased and the skeletal outline of the both condyles became relatively clear. As bony changes may begin in the early stage of the renal disease, dentists should be alert to detect the sign of the disease. In addition, it is important to differentiate TMJ arthritis of systemic cause because the treatment protocol is quite different.

Difference of fMRI between the Tickling and Sensory Stimulation Using 3.0 Tesla MRI (3.0T 자기공명영상장치를 이용한 사람의 간지럼자극과 감각중추 자극의 활성화 차이)

  • Khang, Hyun-Soo;Lim, Ki-Seon;Han, Dong-Kyoon
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.2
    • /
    • pp.286-294
    • /
    • 2010
  • This study was performed to identify the cerebral network associated with sensation through the tickling stimulation, which is distinctive from the rest of other networks processing normal stimulation and to investigate the difference of laughing mechanism which is closely related to tickling using functional MRI(fMRI). A 16 healthy volunteers (mean age: 28.9) on a 3.0T MR scanner during two sensation conditions. Counterbalanced stimulus were presented across the participants, and the stimulation was used block design. Acquired data was analyzed by the statistical parametric mapping (SPM 99). Subject and group analysis was performed. Individual analysis showed the activation of somatic sensation area in both tasks and the tickling sensation test showed more activated area in the Wernicke's area(BA40) compared to the normal sensation. The group analysis result shows that under normal stimulations, both sides of somatosensory cortices(BA 1,2 and 3) were activated and under tickling stimulation, not only the cortices but also those huge activation on thalamus, cingulate gyrus and insular lobe were detected. When the tickling was stopped, significant activations were shown in right cingulate gyrus, left MFG area and left insular lobe. A cerebral area responsible for recognizing tickling sensation was examined and the primitive stimulation such as tickling is much closely related to laugh, which is an important factor for various social activities.

Effect of intake of dried mackerel on fatty acid compositions in liver and nervous tissue (건조 고등어 섭취가 마우스의 간 및 신경조직의 지방산 조성에 미치는 영향)

  • Choi, Hyung-Ju;Kim, Kyung-Kun;Lim, Sun-Young
    • Journal of Life Science
    • /
    • v.17 no.4 s.84
    • /
    • pp.546-551
    • /
    • 2007
  • The purpose of this investigation was to determine the effect of feeding dried mackerel as a means of increasing the intake of these n-3 polyunsaturated fatty acids on fatty acid compositions in liver and nervous tissue. Twenty male mice aged at 4 weeks were fed on the control (5% palm oil, control group) and 5% dried mackerel diets (mackerel group) for four weeks. In fatty acid compositions of liver and cortex, levels of total n-3 fatty acid, specially docosahexaenoic (22:6n-3, DHA) and eicosapentaenoic (20:5n-3, EPA) acids, were increased in the mackerel group compared to the control group, while docosapentaenoic acid (22:5n-6, DPAn-6) levels were decreased (p<0.05). In cerebellum and retina, levels of DHA were not significantly different between the control and mackerel groups, but levels of total n-6 fatty acids and arachidonic acid (20:4n-6, AA) were decreased in the mackerel group. These results indicated that intake of 5% dried mackerel increased levels of n-3 polyunsaturated fatty acids in cortex. Thus, we will investigate the relationship between brain function and cortex fatty acid compositions following intake of mackerel by assessing discrimination leaning ability.

Tolerance by Electric Shock in Hippocampectomized Rats (뇌 해마가 제거된 흰쥐의 전기충격에 대한 내력(耐力))

  • Bai, Sun-Ho;Kim, Chul
    • The Korean Journal of Physiology
    • /
    • v.9 no.1
    • /
    • pp.57-61
    • /
    • 1975
  • A study was designed to clarify the influence of the hippocampus upon tolerance by electric shock. Forty-eight male rats were used, of which 14 rats had their hippocampal tissue on both sides removed through an opening in the parieto-occipital cortex (hippocampal group), 17 rats received damage to the parieto-occipital cortex only (cortical control group), and 17 rats served as normal control animals. After 24 hours' fasting with water ad libitum, each animal was restrained on a plate with added electric shock (4 mA A.C., 1.5 sec in a duration, and once per minute in average) to the tail for the last 24 hours without food and water. The mortality in each animal group and the mean survival time of the dead animal during the repitition of electric shock were calculated. Results obtained were as follows: 1. The mortality was lower significantly in the hippocampal group than in the two control groups. 2. The mean survival time of the dead animal was longer insignificantly in the hippocampal group than in the two control groups. The inference from the above results is that the hippocampus exerts a inhibitory influence upon tolerance by electric shock.

  • PDF

Voiding cystourethrography in children with an initial episode of febrile urinary tract infection (생후 처음으로 발생한 발열성 요로감염 환자의 배뇨성 방광 요도 조영술)

  • Lee, Hae Jeong;Lee, Won Deok;Kim, Hyun Seok;Kim, Tae Hong;Lee, Joo Seok;Cho, Kyung Lae
    • Clinical and Experimental Pediatrics
    • /
    • v.49 no.6
    • /
    • pp.653-658
    • /
    • 2006
  • Purpose : Because voiding cystourethrography(VCUG) is an invasive method, we studied whether VCUG could be postponed through evaluation of alternative non-invasive tests including renal ultrasonography and $^{99m}Tc$-DMSA renal scan. Methods : We reviewed the medical records of 175 patients initially diagnosed with febrile urinary tract infection during the one year period of 1999, and compared 3-tests : renal ultrasongraphy, $^{99m}Tc$-DMSA renal scan, and VCUG. Results : Renal ultrasonography didn't contribute to the prognostication of pyelonephritis(photopenic areas) or vesicoureteral reflux(VUR). Presentation of photopenic areas in $^{99m}Tc$-DMSA renal scan was related to VUR. If both findings of renal ultrasonography and $^{99m}Tc$-DMSA renal scans were normal, this condition was closely related to normal results in VCUG. And if both examinations were abnormal, the condition was closely related to VUR. But this state could not always guarantee the normal result from VCUG because of low sensitivity in finding VUR. Conclusion : In cases in which acute phyelonephritis is demonstrated by $^{99m}Tc$-DMSA renal scan, VCUG is required. In addition to this, if the conditions of hydronephrosis, vesicoureteral dilatation, increases of renal volume, and changes of echogenesity are shown by renal ultrasonography, VCUG should be performed. If a patient has difficulty undergoing VCUG, temporary postponement of VCUG can be taken into consideration, but only in cases where both examinations of renal ultrasonography and $^{99m}Tc$-DMSA renal scan are normal. Nevertheless, close observation is be advised even in this case.

Oxidative Stress and HSP70 Expression Upon Cerebral Isehemia-Reperfusion in Mongolian Gerbil (모래쥐에서 뇌의 허혈/재관류에 의한 산화성 스트레스 형성과 HSP70의 발현)

  • Park, Young-Mee;Kim, Chul-Hoon;Do, Yun-Jeong;Choi, Eun-Mi;Ahn, Young-Soo
    • The Korean Journal of Pharmacology
    • /
    • v.32 no.3
    • /
    • pp.335-345
    • /
    • 1996
  • A critical role of oxygen-derived free radicals has been implicated in ischemia/reperfusion (I/R)-induced brain damage. In this study, we have produced experimental I/R to the brains of Mongolian gerbil (Meriones unguiculatus) by a transient occlusion and release of the common carotid arteries. We have attempted to determine whether the oxidative stress is generated upon I/R and whether this oxidative stress is linked to the cell damage. Since hippocampus has been suggested as one of the most vulnerable regions of the brain to the oxidative stress, we analyzed samples from hippocampus in comparison with those from cortex. In addition, we have examined the expression of heat shock protein 70kD species (HSP70) in these regions in order to evaluate a possible role of this protein in I/R-induced brain damage. To determine whether the oxidative stress is produced upon I/R, we measured the glutathione oxidation, GSSG/ (GSH + 2xGSSG), as an index of oxidative stress. We found an increase of the glutathione oxidation primarily in hippocampus upon I/R. To determine whether this oxidative stress is linked to the cell damage, we measured the degree of lipid peroxidation upon I/R. We found an increase of lipid peroxidation in both regions. However, the magnitude of increases was greater in hippocampus than in cortex. In addition, we found that changes in both the magnitude and the temporal patterns of glutathione oxidation closely correlated with those of lipid peroxidation. Our study provides biochemical evidences that the oxidative stress is generated upon I/R and this oxidative stress is linked to the oxidative cell damage. Our study also provides evidences that the degree of oxidative stress as well as oxidative cell damage is greater in hippocampus than in cortex. We could not find difference in the basal level of HSP70 expression between hippocampus and cortex, indicating that the intrinsic vulnerability of hippocampus cannot be explained by the lower level of HSP70 expression. We did find, however, that the induction of HSP70 expression upon I/R was impaired in the hippocampus. This impairment appeared to be at the transcriptional level. These results suggest that the measurement of HSP70 induction may be employed as a useful predictor of differential cellular susceptibilities to the I/R-induced brain damage.

  • PDF