• Title/Summary/Keyword: 피에조 잉크젯

Search Result 17, Processing Time 0.02 seconds

A Numerical Study on the Formation of Droplet in Piezo Inkjet Head (피에조 잉크젯 헤드의 액적 토출 형상의 전산해석)

  • Joo, Young-Cheol;Kim, Nan-Sook
    • Proceedings of the KAIS Fall Conference
    • /
    • 2011.05b
    • /
    • pp.828-831
    • /
    • 2011
  • 본 논문에서는 피에조 잉크젯 헤드의 액적 토출 형상에 대해 전산해석을 통하여 연구하였다. 열유체 해석 전용 프로그램인 FLUENT를 이용하여 에틸렌 글리콜이 잉크젯 헤드의 노즐에서 토출될 때의 형상을 전산모사하였다. 노즐 출구에서 메니스커스 변위의 시간에 따른 변화를 직접 측정하여 노즐 입구의 속도분포를 예측하고 이를 해석의 입력 자료로 사용하였다. 측정치와 해석치를 비교한 결과 전산해석이 측정치의 액정 형성 과정을 잘 모사함을 알 수 있었다.

  • PDF

Waveform Design for Piezo Inkjet via Self- sensing Measurement (셀프 센싱을 이용한 피에조 잉크젯의 파형 설계)

  • Kim, Woo-Sik;Kwon, Kye-Si
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.4 s.121
    • /
    • pp.333-341
    • /
    • 2007
  • Waveform design method for inkjet printing has been proposed tv pressure wave measurement. The pressure wane inside the inkjet dispenser can be effectively measured by current measurement due to self-sensing capability of PZT. The pressure wave measured from current was verified by commercially availablelaser vibrometer. In order to obtain high speed inkjet droplets, two pulse waveform was designed such that the pressure wane after droplet formation can be minimized.

메니스커스 측정을 이용한 잉크젯 입력 파형 설계

  • Gwon, Gye-Si;Kim, Jin-Won;Go, Jeong-Guk
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.05a
    • /
    • pp.14.2-14.2
    • /
    • 2009
  • 잉크젯의 응용이 넓어 짐에 잉크젯 헤드에서의 잉크 토출을 효과적으로 제어해야되는 이슈가 대두 되고 있다. 이를 위해서는 잉크젯 헤드의 입력전압을 적절하게 인가 해야만 한다. 본 연구에서는 잉크젯 토출 현상을 이해하고 이를 통해 잉크젯 헤드의 최적의 입력 파형을 설계가 가능한 알고리즘을 소개 하려고 한다. 본 연구에서는 토출 현상을 측정하기 위하여 CCD 카메라의 이미지를 사용한 메니스커스 운동을 측정하였다. 측정된 메니스커스 운동은 잉크젯 헤드의 피에조에 인가되는 입력전압에 의해서 야기된 압력파가 노즐에 전달되어 나타나는 현상이다. 따라서 잉크젯 헤드내의 현상 뿐만 아니라 잉크젯 토출 현상의 많은 정보를 가지고 있다. 파형 설계를 위해서 메니스커스 운동의 주기를 측정하여 잉크젯 입력 파형의 최적의 휴지시간 (dwell time)을 결정하는것이 가능하였음을 실험적으로 검증하였다. 또한 메니스커스 운동을 측정 함으로서 설계된 파형을 평가하것도 용이함을 실험적으로 보였다.

  • PDF

Development of Multi Piezo Ink-Jet Printing System Using Arbitrarily Waveform Generator (임의 전압파형발생기를 이용한 다중 피에조 잉크젯 3D 프린팅 장비 개발)

  • Kim, Jung Su;Kim, Dong Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.9
    • /
    • pp.781-786
    • /
    • 2015
  • Recently, studies of 3D printing methods have been working in various applications. For example, the powder base method laminates the prints by using a binding or laser sintering method. However, the draw back of this method is that the post process is time consuming and does not allow for parts to be rapidly manufactured. The binding method requires the post process while the time required for the post process is longer than the manufacturing time. This paper proposes a UV curing binding method with an integrated piezo printing head system. The optimization of an arbitrary waveform generation for the control of a UV curable resin droplet was researched, in addition to developed optimized UV curing processes in multi nozzle ink jet heads.

Droplet Formation of a Piezoelectric Inkjet Nozzle According to the Variation of Pulse Widths in Bipolar Waveform (양극파형의 펄스폭 변화에 따른 피에조 구동형 잉크젯 노즐의 액적 토출 특성)

  • Choi, Sung-Hoon;Sung, Jae-Yong;Lee, Myeong-Ho
    • Journal of the Korean Society of Visualization
    • /
    • v.10 no.1
    • /
    • pp.9-14
    • /
    • 2012
  • In this study, a piezoelectric inkjet nozzle with a rectangular shaped channel has been developed, and the characteristics of droplet formation have been investigated according to the variation of pulse widths in bipolar waveform. The channel of the nozzle was fabricated transparently by a precision machining technique. A tantalum membrane which was attached to a piezoelectric material covers the channel. By applying two types of bipolar waveforms to the piezoelectric actuators, droplet formation through the nozzle was monitored by a CCD camera. For the variety of the first and second pulse widths in the bipolar waveforms, the regimes of single and double droplet formations are presented. The change of droplet velocity which depends on the pulse width and the type of waveform is also discussed.

On the Characteristics of the Droplet Formation from an Inkjet Nozzle Driven by a Piezoelectric Actuator (피에조 구동형 잉크젯 노즐에서의 미세 액적 형성 특성)

  • Shin, Pyung-Ho;Sung, Jae-Yong;Lee, Suk-Jong
    • Journal of the Korean Society of Visualization
    • /
    • v.6 no.1
    • /
    • pp.47-52
    • /
    • 2008
  • The present study has focused on the characteristics of droplet formation from an inkjet nozzle driven by a piezoelectric actuator. As an operating fluid, ethylene glycol was used and the physical properties of it such as viscosity, surface tension, contact angle and shear stress were measured. During the experiments, various temperatures and driving voltages are imposed on a capillary tube. These conditions result in a proper drive condition or an overdrive condition. In case of the proper drive condition, an image processing technique is applied to measure the diameter of a single free drop. As a result, the size of droplet is increased when the driving voltage is increased from 160 V to 190 V at 25$^{\circ}C$ In the overdrive condition where temperature or driving voltage becomes higher than the proper drive condition, satellites and the misdirected jets happen.

Numerical Simulation of Inkjet Drop Formation in Piezo Inkjet Head (피에조 잉크젯 헤드의 액적 토출 형상 전산해석)

  • Joo, Youngcheol;Park, Sangkug;Kwon, Key-Si
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.7
    • /
    • pp.641-647
    • /
    • 2016
  • A drop-on-demand inkjet is used widely for various applications. Therefore, it is important to understand the jetting behavior of the drop from the piezo inkjet. In this study, to predict the jetting behavior, VOF (Volume-of-Fluid) simulation techniques were used and compared with the experimental results. The experimentally measured meniscus movement was used as the input data for the simulation. To verify the simulation, the measured jetting behavior of the mixture fluids of ethylene glycol and IPA (isopropyl alcohol), which has a mixing ratio of 50:50, was used. The numerical simulation of the drop formation using various mixture ratios and its comparison with the measured drop formation confirmed that the proposed method can predict the actual jetting. On the other hand, the satellite drop behavior showed slight differences because the small sized droplet is subject to a more aerodynamic effect during flight because the kinetic energy of the satellite droplet is far smaller than that of the main droplet.

Development of Methods for Detecting Inkjet Malfunction (잉크젯 헤드의 오작동 검출 방법 개발)

  • Kwon, Kye-Si;Go, Jung-Kook;Kim, Jin-Won;Kim, Dong-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.10
    • /
    • pp.1529-1535
    • /
    • 2010
  • For the reliable use of inkjet technology as patterning tools, the jetting of the inkjet dispenser needs to be monitored for real-time detection of any malfunction. We present a self-sensing circuit that can be used to detect jetting failure by measuring electrical signals only. In addition, practical problems involved in the monitoring of inkjets in multinozzle printheads are discussed. In the study, software was developed and presented to demonstrate the feasibility of the proposed method for detecting inkjet jetting failure in a printing system.

Experimental Analysis of Droplet Formation Process for Inkjet Printhead (잉크젯 헤드를 이용한 액적 토출 현상의 실험적 분석)

  • Jo, Y.M.;Park, S.J.
    • Journal of ILASS-Korea
    • /
    • v.15 no.4
    • /
    • pp.163-169
    • /
    • 2010
  • Jetting stability is the most important factors in inkjet printing because printing quality is totally determined by shape of the droplets on the substrate. In order to acquire stable jet, viscosity and dynamic behavior of the ink must be considered. In addition, waveform to drive the inkjet printhead is also to be controlled. In this study, the driving waveform composed of rising time, dwell time and falling time is optimized to obtain a stable jetting using drop watcher system. Also, effect of ink viscosity on jetting is experimentally investigated by changing the temperature of ink cartridge. As a result, jetted drop having uniform velocity is acquired.