• Title/Summary/Keyword: 피스톤의 2차적 동역학

Search Result 2, Processing Time 0.016 seconds

Dynamic Behavior Analysis of Reciprocating Compressor Pistons (왕복동형 압축기 피스톤의 동적 거동 해석)

  • 김태종
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.9
    • /
    • pp.717-724
    • /
    • 2002
  • In this study, a numerical analysis for the piston secondary dynamics of small refrigeration reciprocating compressors is performed. In general, the length of cylinder in this class of compressors is shortened to diminish the frictional losses of the piston-cylinder system. So, the contacting length between piston and cylinder wall is in variable with the rotating crank angle around the BDC of the reciprocating piston. In the problem formulation of the piston dynamics, the change in bearing length of the piston and all corresponding forces and moments are considered in order to determine the piston trajectory, velocity and acceleration at each step. A Newton-Raphson procedure was employed in solving the secondary dynamic equations of the piston. The developed computer program can be used to calculate the entire piston trajectory and the hydrodynamic force and moment as functions of crank angle under compressor running conditions. The results explored the effects of the radial clearance, lubricant viscosity, length of the cylinder wall, and pin location on the stability of the piston.

Frictional Loss Analysis of a Reciprocating Compressor with Thrust Ball Bearing (스러스트 볼 베어링이 적용된 왕복동형 압축기의 마찰손실 해석)

  • Kim, Tae-Jong
    • Tribology and Lubricants
    • /
    • v.27 no.2
    • /
    • pp.101-108
    • /
    • 2011
  • In this paper, a study on the frictional losses and dynamic behaviors of a reciprocating compression mechanism used in small refrigeration compressor is performed. In the problem formulation of the compressor dynamics, the viscous frictional force between piston and cylinder wall is considered in order to determine the coupled dynamic behaviors of piston and crankshaft supported on a thrust ball bearing. The solutions of the equations of motion of the reciprocating mechanism along with the time dependent Reynolds equations for the lubricating film between piston and cylinder wall and lubricant films of the journal bearings are obtained simultaneously. The hydrodynamic forces of journal bearings are calculated using finite bearing model and G$\hat{u}$m-bel boundary condition. And, a Newton-Raphson procedure was employed in solving the nonlinear equations of piston and crankshaft with a thrust ball bearing. The results explored the effects of design parameters on the frictional losses and dynamic stability of the compression mechanism.