• Title/Summary/Keyword: 피로 연성 계수와 지수

Search Result 2, Processing Time 0.017 seconds

The Low Cycle Fatigue Behavior of Laser Welded Sheet Metal for Different Materials (이종재료 레이저 용접 판재의 저주기 피로 특성)

  • Kim Seog-Hwan;Kwak Dai-Soon;Kim Woong-Chan;Oh Taek-Yul
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.627-631
    • /
    • 2005
  • In this study, low fatigue behavior of laser welded sheet metal were investigated. Before welding, the cross section of butt joint was prepared only by fine shearing without milling process. Specimens were same sheet metal and welding condition that using automobile manufacturing company at present. Butt joint of cold rolled sheet metal was welded by $CO_2$ laser. It is used that welding condition such as laser welding speed was 5.5m/sec and laser output power was 5kW for 0.8mm and 1.2mm sheet metal. The laser weldments were machined same or different thickness and same or different material. In order to mechanical properties of around welding zone, hardness test was performed. Hardness of welding bead is about 2 times greater than base material. We performed the low cycle fatigue tests for obtaining fatigue properties about thickness and the weld line direction of specimen. The results of strain controlled low cycle fatigue test indicate that all specimens occur cyclic softening, as indicated by the decrease in stress to reach a prescribed strain.

  • PDF

Application of Load and Resistance Factor Design Format to Designing Flexible Pavements (LRFD 기법을 활용한 연성포장 설계방안에 관한 연구)

  • Kim, Hyung-Bae
    • International Journal of Highway Engineering
    • /
    • v.5 no.1 s.15
    • /
    • pp.1-10
    • /
    • 2003
  • The objective of pavement design, just as with the design of other structures, is to obtain the most economical designs at specified levels of reliability. Methods that yield designs with different levels of reliability are undesirable, and over the course of time design approaches in the U.S. and Europe have converged toward the Load and Resistance Factor Design (LRFD) format in order to assure uniform reliability. At present the LRFD format has been implemented in concrete, steel, wood and bridge design specifications. In this paper, reliability theories are used to illustrate the development of an LRFD format for Mechanistic-Empirical (M-E) design of flexible pavements as an alternative of its reliability module. It is shown in this paper that ten candidate pavement sections designed with a reliability level using the AASHTO design guide (1986) do not have uniform structural reliability in terms of pavement mechanistic distress such as fatigue cracking and the uniform reliability can be achieved by using the LRFD format.

  • PDF