• Title/Summary/Keyword: 피로 균열

Search Result 1,282, Processing Time 0.018 seconds

Long-Term Performance Evaluation on the Recycled Asphalt Concrete Using the Steel Slag and Reclaimed Asphalt Pavement Aggregates (제강 슬래그 및 순환골재를 사용한 순환 아스팔트 혼합물의 장기 공용성 평가)

  • Park, Kyung-Won;Jang, Dong-Bok;Lee, Jong-Min;Kang, Byung-Hwa;Kim, Hyung-Bae
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.4
    • /
    • pp.633-641
    • /
    • 2021
  • The study performed long-term performacne evaluation on the hot mix asphalt using the steel slag aggregates and Reclaimed Asphalt Pavement (RAP). The laboratory comparative evaluation was conducted between conventional Hot Mix Asphalt (HMA) which is entitled WC-2 and HMA containing steel slag and RAP which is entitled ES WC-2(R). Dynamic stability test, dynamic modulus test, and fatigue crack test were conducted during the comparative evaluation process. The dynamic stability test result showed that ES WC-2(R) was 140% higher than WC-2. It is noted that ES WC-2(R) showed no inflection point whereas WC-2 showed inflection point during the dynamic stability test which implies ES WC-2(R) has the higher moisture susceptability than WC-2. The dynamic modulus of ES WC-2(R) were 342.3%, 486.7%, and 350.0% higher than WC-2 at medium temperature of 21℃, low temperature of -10℃, and high temperature of 38℃ respectively. The test result showed that rutting resistance of ES WC-2(R) is higher than WC-2 at all temperature spectrum. The fatigue resistance of ES WC-2(R) were 31.7%, 325.3%, 899.9% higher at low stress level, medium stress level, and high stress level, respectively. The test result showed that ES WC-2(R) is higher than WC-2 at all stress levels. Based on the laboratory comparative evaluation, The in-situ scale Accelerated Pavement Test (APT) was conducted comparing WC-2 and WC-2(R). APT found that the rutting resistance of WC-2(R) was 45% higher than WC-2.

Numerical Examinations of Damage Process on the Chuteway Slabs of Spillway under Various Flow Conditions (여수로 방류에 따른 여수로 바닥슬래브의 손상 발생원인 수치모의 검토)

  • Yoo, Hyung Ju;Shin, Dong-Hoon;Kim, Dong Hyun;Lee, Seung Oh
    • Journal of Korean Society of Disaster and Security
    • /
    • v.14 no.4
    • /
    • pp.47-60
    • /
    • 2021
  • Recently, as the occurrence frequency of sudden floods due to climate variability increased, the damage of aging chuteway slabs of spillway are on the rise. Accordingly, a wide array of field survey, hydraulic experiment and numerical simulation have been conducted to find the cause of damage on chuteway slabs. However, these studies generally reviewed the flow characteristics and distribution of pressure on chuteway slabs. Therefore the derivation of damage on chuteway slabs was relatively insufficient in the literature. In this study, the cavitation erosion and hydraulic jacking were assumed to be the causes of damage on chuteway slabs, and the phenomena were reproduced using 3D numerical models, FLOW-3D and COMSOL Multiphysics. In addition, the cavitation index was calculated and the von Mises stress by uplift pressure distribution was compared with tensile and bending strength of concrete to evaluate the possibility of cavitation erosion and hydraulic jacking. As a result of numerical simulation on cavitation erosion and hydraulic jacking under various flow conditions with complete opening gate, the cavitation index in the downstream of spillway was less than 0.3, and the von Mises stress on concrete was 4.6 to 5.0 MPa. When von Mises stress was compared with tensile and bending strength of concrete, the fatigue failure caused by continuous pressure fluctuation occurred on chuteway slabs. Therefore, the cavitation erosion and hydraulic jacking caused by high speed flow were one of the main causes of damage to the chuteway slabs in spillway. However, this study has limitations in that the various shape conditions of damage(cavity and crack) and flow conditions were not considered and Fluid-Structure Interaction (FSI) was not simulated. If these limitations are supplemented and reviewed, it is expected to derive more efficient utilization of the maintenance plan on spillway in the future.