• Title/Summary/Keyword: 피로해석 시스템

Search Result 117, Processing Time 0.027 seconds

Analysis of Durability of Vehicle Chassis Part in Virtual Test Lab (가상내구시험을 통한 차량 샤시 부품 내구성 예측에 관한 연구)

  • Cho, ByungKwan;Ha, Jungho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.6
    • /
    • pp.747-752
    • /
    • 2013
  • Recently, virtual test laboratory techniques have been widely used to reduce vehicle development costs and time. In this study, a virtual durability test process using multibody dynamics simulation and fatigue simulation is proposed. The flexible multibody model of the front half of a car suspension is solved using road loads that are measured from durability test courses such as a Belgian road. To verify the simulation results, the measured loads of components and simulation results are collated.

Development of Evaluation System for Fatigue Strength on the Connection Between Longitudinals and Transverse Web (유조선 종통보강재와 횡늑골 연결부의 피로강도 평가용 자동화 시스템 개발)

  • Hong, Ki-Sup;Kim, Sung-Chan;Ahn, Jae-Wook;Kim, Seong-Ki
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.46 no.5
    • /
    • pp.510-519
    • /
    • 2009
  • Ship structure is composed of the welded mixture members which are plate and stiffeners. Ship structure is also influenced by variable loadings such as wave and inertia load. There have been several fatigue damage problems on the connection between longitudinal and transverse web due to wide usage of high tensile steel and adoption of wide web space to improve shipbuilding productivity. It is impossible to estimate the fatigue lives for all connection details through refined fatigue analysis. It is necessary to use the simplified approach for the fatigue life estimation of the connection details. PLUS analysis, which is suggested by the classification society, is one of the simplified approaches and is widely adopted to get fatigue lives for the connection details along whole cargo hold area. However, ship building yards still have difficulties to get fatigue lives due to large amount of calculation and time even if this approach reduce the time and amount of calculation. This paper treats the computing system developed to reduce efforts of estimating the fatigue lives. The influence factors of mean shear stress and local dynamic pressure are easily calculated and fatigue lives for all hot spots can be estimated automatically by the developed computing system. It is possible to reduce computing time and efforts to get the fatigue lives for the connection details between longitudinals and transverse webs along the ship. This system was applied to get fatigue lives on the connection details of a VLCC and verified the availability.

Fatigue Analysis for Newly Installed Blade Antenna of Aging Aircraft (노후 항공기 신규 블레이드 타입 안테나 장착에 따른 피로 해석 연구)

  • Lee, Sang Hoon;Lee, Sook;Choi, Sang Min
    • Journal of Aerospace System Engineering
    • /
    • v.13 no.5
    • /
    • pp.65-71
    • /
    • 2019
  • In this study, as a part of the aging aircraft performance improvement project for which no design information is provided, a new type of blade antenna is installed on the main part of the aging aircraft, and the method of proving the fatigue life of the main part of the aircraft is reviewed and summarized. There are various methods to prove fatigue life according to the manufacturer and aircraft design conditions. The fatigue life prediction and damage tolerance range of the relevant site were obtained through related regulations and industry examples. From these results, the fatigue life of newly installed antennas around the main parts of the aging aircraft was evaluated and the maintenance period and criteria were set according to the damage tolerance.

Evaluation of the Structural Behavior Characteristics and Long Term Durability for Transition Track Systems in Railway Bridge Deck Ends (철도교량 단부 전환부 궤도시스템의 구조적 거동특성 및 장기 내구성능 분석)

  • Lee, Kwangdo;Jeong, Incheol;Choi, Jungyoul;Park, Yonggul
    • Journal of the Korean Society for Railway
    • /
    • v.17 no.4
    • /
    • pp.260-269
    • /
    • 2014
  • Transition tracks are an alternative for enhancing the long-term serviceability and durability of concrete track components in railway bridges. The goal of this paper is to investigate the structural behavior for transition track systems of railway bridge deck ends. In this study, the structural behavior of transition tracks such as the variations in static, dynamic, and fatigue behaviors and dynamic properties (natural frequency and damping ratio) are assessed and compared through performing loading tests and finite element analyses using actual vehicle impact loadings. As a result, it is found that the structural behavior of the transition track system is expected to satisfy the actual vehicle impact loading, and the variation in the neutral axis and dynamic characteristics are not affected by the fatigue loading. Therefore, it is inferred that the structural capacity and long-term durability of the transition track system is proven.

Integrated Design System to perform Fatigue Durability Analysis of Automobile Suspension Module (자동차 서스펜션 모듈 피로내구해석을 위한 통합설계시스템 개발)

  • Han, Seung-Ho;Lee, Jai-Kyung;Lee, Tae-Hee;Jang, Kwang-Sub;Kwon, Tae-Woo
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1652-1657
    • /
    • 2007
  • Designer must cope with frequent changes in geometric information of automobile suspension module in the early stage of the design process. The authors developed the PSG(Parametric Set Generator) to create parametric models and to change geometric information concerning the lower arm, which is one of the important parts of the automobile suspension module. CAD models provided from the PSG can be utilized to assess fatigue durability via the FE modeling support system. This system provides easy and fast FE-modeling for a static and durability analysis of the lower arm. The PSG and the FE modeling support system are integrated using the e-engineering framework based on the JADE platform. In this study, a durability analysis as a case study for the lower arm manufactured at H company is performed, and the efficiency obtained is discussed.

  • PDF

Aerodynamic and Structural Design for Medium Scale Horizontal Axis Wind Turbine Rotor Blade with Composite Material (복합재를 이용한 수평축 풍력터빈 회전날개의 공력 및 구조설계에 관한 연구)

  • 공창덕;김기범;오동우;방조혁;김학봉;김종식;유지윤
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1997.11a
    • /
    • pp.22-22
    • /
    • 1997
  • 무공해 에너지원은 화석에너지의 고갈과 환경오염의 심각한 문제로 인하여 절실히 요구되고 있는 실정이다. 그중 풍력발전 시스템은 타 에너지원에 비해 여러 가지 측면에서 유리한 점을 가치고 있다. 본 연구에서는 500Kw급 풍력발전 시스템을 개발함에 있어, 적합한 공력 성능 및 구조성능을 가지는 회전날개 설계과정을 수행하였다. 공력설계는 운용지역의 풍황을 고려하여 회전날개의 외형을 결정하였고 이를 바탕으로 공력성능해석이 수행되었으며, 구조설계는 복합재료를 사용하여 쉘-스파 구조를 갖도록 설계하여 굽힘 및 비틀림 그리고 피로수명에 대한 구조해석이 수행되었다. 그 결과 4m/s의 미풍에서도 운용가능하며, 12m/s에서는 정격출력 550Kw를 생산할 수 있는 형상이 설계되었고, 또한 20년 이상의 피로수명이 확보되었으며, 공질 등의 동적인 문제도 발생하지 않음을 확인하였다.

  • PDF

Fatigue Life Estimation for Flaperon Joint of Tilt-Rotor UAV (틸트 로터 무인항공기의 플랩퍼론 연결부에 대한 피로수명 평가)

  • Kim, Myung Jun;Park, Young Chul;Lee, Jung Jin;Park, Jung Sun
    • Journal of Aerospace System Engineering
    • /
    • v.3 no.2
    • /
    • pp.12-19
    • /
    • 2009
  • The research for the fatigue analysis is regarded greatly as important in aerospace field. Moreover, a study on the fatigue characteristic is very actively progressing. In this study, the fatigue life estimation was performed for Flaperon Joint which has FCL(fatigue critical location) of tilt-rotor UAV. The Flaperon Joint should be taken the various loads by several missions profiles of UAV. The fatigue load spectrum of Flaperon Joint is generated by the standard mission segment for the tilt-rotor UAV, and this spectrum is used for the fatigue test and analysis. The in-house fatigue analysis program is applied to calculate the fatigue life based on Stress-Life(S-N) method. The S-N curve is generated from the S-N data of Mil-Handbook by second order polynomial regression method. Moreover, the coefficient of determination is used to ensure how accuracy it has. In addition, the Goodman equation is used to consider the mean stress effect for evaluating more accurate fatigue life. Finally, the result of fatigue analysis is verified by comparing with the fatigue test result for the Flaperon Joint.

  • PDF

Evaluation of Fatigue Life of Electro-Mechanical Actuator for Front Wheel Steering (전륜 조향용 전기식 작동기 피로수명 평가)

  • Young-Cheol Kim;Hyun-gi Kim;Dong-Hyeop Kim;Sang-Woo Kim
    • Journal of Aerospace System Engineering
    • /
    • v.17 no.4
    • /
    • pp.126-132
    • /
    • 2023
  • Recently, the consideration of eco-friendly technology to reduce greenhouse gas is being emphasized in the aviation field. Various studies for applying electro-mechanical actuators that control mechanical linear and rotational movements using electricity as the primary power source are in progress. In this study, the fatigue analysis of the electro-mechanical actuator for the front wheel steering of a single aisle aircraft was carried out. A unit load stress table was constructed for the vulnerable part selected through structural analysis, and the representative stress for each load profile was calculated using the unit load stress table constructed for the vulnerable part. Then, individual profiles of representative stress group were extracted from continuous load profiles by applying the rainflow counting method. The damage of each profile was calculated by applying the S-N diagram. Finally, the total damage in the vulnerable parts was calculated by the linear cumulative damage law, and the fatigue life of the electro-mechanical actuator for the front wheel steering of a single aisle aircraft was evaluated.

Biomechanical Fatigue Analysis of Cervical Plate Systems by using a Computer Simulation Based on Finite Element Method (유한요소법을 이용한 척추 삽입형 경추판 시스템에 대한 생체역학적 피로해석)

  • Kim, Sung-Min;Yang, In-Chul;Cho, Sung-Youn
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.8
    • /
    • pp.96-103
    • /
    • 2008
  • In this study, we performed the biomechanical analysis of cervical plate systems by using a computer simulation based on finite element method to derive reliable model by analysis of design variables and fatigue behavior. To simulate the cervical spine movement in-vivo state by surgery, we modeled the cervical plate system which consisted of screws, rings, rivets, and plate and Ultra High Molecular Weight Polyethylene (UHMWPE) Block. The experiment of cervical plate system followed the ASTM F1717 standards that covered the materials and methods for the static and fatigue testing. The result of computer simulation is compared with experimented test. We expected this study is to derive reliable results by analysis of design variables and fatigue behavior for developing a new model.

Study of Improvement in Fatigue Life of Fuel Injection Pipe of Common Rail System (커먼레일 시스템 연료분사관의 피로수명 개선에 관한 연구)

  • Song, Se Arm;Bae, Jun Ho;Jung, Sung Yuen;Kim, Chul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.8
    • /
    • pp.991-998
    • /
    • 2013
  • The fuel injection pipe of a common rail system used in a clean diesel vehicle plays a role in supplying fuel from a rail to the injector of each cylinder connecting the engine under a repeated internal pressure. The fuel injection pressure is increased to over 200 MPa for satisfying EU emission standards and improving fuel efficiency, and a heading process and an autofrettage process are required for preventing folding defects and improving fatigue life. In this study, the flow stress and SN data of the material of the pipe are obtained through a tensile test and a fatigue test. The heading process for checking the folding defects of pipe ends is performed by using FEA. Furthermore, the optimal design of the autofrettage process for improving fatigue life considering not only the compressive residual stresses of the inner surface but also the tensile residual stresses of the outer surfaces of the pipe under the repeated internal pressure is performed by using FEA. To verify the process design, fatigue analysis for the autofrettaged pipe is performed.