• Title/Summary/Keyword: 피로파괴

Search Result 630, Processing Time 0.028 seconds

Residual Stress Measurement of Flat Welded Specimen by Electronic Speckle Pattern Interferometry (전자처리스페클패턴 간섭법을 이용한 평판 용접시험편의 잔류응력 측정)

  • Chang, Ho-Seob;Kim, Dong-Soo;Jung, Hyun-Chul;Kim, Kyung-Suk
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.32 no.2
    • /
    • pp.149-154
    • /
    • 2012
  • The size and distribution of welding residual stress and welding deformation in welding structures have an effect on various sorts of damage like brittle failure, fatigue failure and stress corrosion cracking. So, research for this problem is necessary continuously. In this study, non-destructive technique using laser electronic speckle pattern interferometry, plate of welding specimen according to the external load on the entire behavior of residual stress are presented measurement techniques. Once, welding specimen force tensile loading, using electronic speckle pattern interferometry is measured. welding specimen of base metal and weld zone measure strain from measured result, this using measure elastic modulus. In this study, electronic speckle pattern interferometry use weld zone and base metal parts of the strain differences using were presented in residual stress calculated value, This residual stress value were calculated by numerical calculation. Consequently, weld zone of modulus high approximately 3.7 fold beside base metal and this measured approximately 8.46 MPa.

Prediction of Surface Crack Growth Considering the Wheel Load Increment Due to Rail Defect (레일손상에 의한 윤중증가를 고려한 표면균열 성장예측)

  • Jun, Hyun-Kyu;Choi, Jin-Yu;Na, Sung-Hoon;You, Won-Hee
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.9
    • /
    • pp.1078-1085
    • /
    • 2011
  • Prediction of a minimum crack size for growth, which is defined as a crack size that grows fast enough to keep ahead of its removal by contact wear and periodic grinding, is the most demanding work to prevent rail from fatigue failure and develop cost effective railway maintenance strategy In this study, we investigated the wheel load increment due to a rail defect during a train ran over it, and its effect on the minimum crack size for growth. For this purpose, we developed simulation software based on the Fletcher and Kapoor's "2.5D" model and measured wheel load increment during a train passed over a defect. A maximum contact pressure and contact patch size were calculated by 3D FEM and crack growth analyses were performed by varying two of dominant contact contributors; surface friction coefficient(0.1, 0.2, 0.3 and 0.4) and crack aspect ratio. The minimum crack sizes for growth were calculated from 0.29 to 1.44mm depending on the contact conditions. They were decreasing with increasing surface friction coefficient and decreasing with crack aspect ratio(a/b).

Development of Reliability Design Technique and Life Prediction Model for Electronic Components (취성/연성 파괴에 대한 수명예측 모델 및 신뢰성 설계)

  • Kim, Il-Ho;Lee, Soon-Bok
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1740-1743
    • /
    • 2007
  • In this study, two types of fatigue tests were conducted. First, cyclic bending tests were performed using the micro-bending tester. A four-point bending test method was adopted, because it induces uniform stress fields within a loading span. Second, thermal fatigue tests were conducted using a pseudo power cycling machine which was newly developed for a realistic testing condition. The pseudo-power cycling method makes up for the weak points in a power cycling and a chamber cycling method. Two compositions of solder are tested in all test condition, one is lead-free solder (95.5Sn4.0Ag0.5Cu) and the other is eutectic lead-contained solder (63Sn37Pb). In the cyclic bending test, the solder that exhibits a good reliability can be reversed depending on the load conditions. The lead-contained solders have a longer fatigue life in the region where the applied load is high. On the contrary, the lead-free solder sustained more cyclic loads in the small load region. A similar trend was detected at the thermal cycling test. A three-dimensional finite element analysis model was constructed. A finite element analysis using ABAQUS was performed to extract the applied stress and strain in the solder joints. A constitutive model which includes both creep and plasticity was employed. Thermal fatigue was occurred due to the creep. And plastic deformation is main damage for bending failure. From the inelastic energy dissipation per cycle versus fatigue life curve, it can be found that the bending fatigue life is longer than the thermal fatigue life.

  • PDF

An Experimental Study on the Static Load Capacity of T-Type Tension Joints with High Tension Bolt (고장력볼트 T-인장이음의 정적내력에 관한 실험적 연구)

  • Lee, Seung Yong;Choi, Jun Hyeok;Kim, Kyong Tae
    • Journal of Korean Society of Steel Construction
    • /
    • v.27 no.1
    • /
    • pp.53-61
    • /
    • 2015
  • The tension type joint is a mechanically very efficient connection method, as it directly uses the load capacity of base metal or high tension bolt, the reduction of the number of drilling hole and fastening and the fatigue resistance. It is applied to the joint of girder and cross beam, horizontal joints of towers, beam to column joints, the secondary member joints of deck floor ends, and brackets. In this paper, static load tests for the T-type tension joint were conducted to investigate the structural behavior of the joint. The parameters were bolt diameter, flange thickness, and the reduction of clamping force of the joint. The failure modes and load capacity of joints and the effects of flange thickness, bolt diameter and clamping force were investigated.

Study on the Improvement of Strength for 12% Chromium Steel Rotor (12% Cr 로터강의 강도 개선에 관한 연구)

  • Jang, Yun-Seok;O, Se-Uk
    • Journal of Ocean Engineering and Technology
    • /
    • v.3 no.2
    • /
    • pp.125-137
    • /
    • 1989
  • To check technical improvement in the soundness and strength of 12% Cr steel rotor, a 25 tons of rotor with 65 tons of ingot was made in real size and was cut to pieces to take test samples, and the various mechanical tests such as impact, tensile, creep, and fatigue were carried out. The strengths are compared with those of 1% Cr-Mo-V rotor of same size. Microstructures of the samples are examined and reviewed. The results can be summarized as follows. 1) Fracture appearance transition temperatures are 80.deg. C at the center part and 60.deg. C near surface of 12% Cr rotor, and 8.deg. C near surface of 1% Cr-Mo-V rotor. 2) Comparative rapid softening occurs at higher temperatures above 600.deg. C for 12% Cr steel and 550.deg. C for 1% Cr-Mo-V steel in tension tests. 3) Fatigue crack propagation rate of 12% Cr steel is almost same as that of 1% Cr-Mo-V steel at the same corresponding surface part of the rotors. The crack growth rate of center part of 12% Cr rotor is faster than near surface part of the rotor, and the crack growth rate at the load condition of R=0.04 is slower than that of the load condition of R=0.5 for both 12% Cr steel and 1% Cr-Mo-V steel. 4) Crack growth rate of radial direction near surface of 12% Cr rotor is faster than that of transverse direction at the same part because of the difference in residual stresses. 5) Both creep and fatigue strengths of 12% Cr steel are superior to those of 1% Cr-Mo-V steel and the difference is thought the effect of climb and glide controlled creep by solid solution of alloying elements and dispersion of carbides.

  • PDF

Study on the Improvement of Strength for 12% Chromium Steel Rotor (12% Cr 로터강의 강도 개선에 관한 연구)

  • Jang, Yun-Seok;O, Se-Uk
    • Journal of Ocean Engineering and Technology
    • /
    • v.3 no.2
    • /
    • pp.625-625
    • /
    • 1989
  • To check technical improvement in the soundness and strength of 12% Cr steel rotor, a 25 tons of rotor with 65 tons of ingot was made in real size and was cut to pieces to take test samples, and the various mechanical tests such as impact, tensile, creep, and fatigue were carried out. The strengths are compared with those of 1% Cr-Mo-V rotor of same size. Microstructures of the samples are examined and reviewed. The results can be summarized as follows. 1) Fracture appearance transition temperatures are 80.deg. C at the center part and 60.deg. C near surface of 12% Cr rotor, and 8.deg. C near surface of 1% Cr-Mo-V rotor. 2) Comparative rapid softening occurs at higher temperatures above 600.deg. C for 12% Cr steel and 550.deg. C for 1% Cr-Mo-V steel in tension tests. 3) Fatigue crack propagation rate of 12% Cr steel is almost same as that of 1% Cr-Mo-V steel at the same corresponding surface part of the rotors. The crack growth rate of center part of 12% Cr rotor is faster than near surface part of the rotor, and the crack growth rate at the load condition of R=0.04 is slower than that of the load condition of R=0.5 for both 12% Cr steel and 1% Cr-Mo-V steel. 4) Crack growth rate of radial direction near surface of 12% Cr rotor is faster than that of transverse direction at the same part because of the difference in residual stresses. 5) Both creep and fatigue strengths of 12% Cr steel are superior to those of 1% Cr-Mo-V steel and the difference is thought the effect of climb and glide controlled creep by solid solution of alloying elements and dispersion of carbides.

Stress History of a Bridge Estimated from Statistical Analysis of Traffic Bow (교통류의 통계적 해석으로부터 추정한 교량의 응력이력)

  • Yong, Hwan Sun;Choi, Kang Hee;Choi, Sung Kweon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.9 no.1
    • /
    • pp.1-10
    • /
    • 1989
  • The stress history of a bridge is different depending on the characteristic of traffic flow. Because the flow is varied with vehicle type, weight and headway time etc., statistical analysis in bridges is necessary to estimate the history by traffic flow. By applying the statistical analyses in fracture mechanics, the remaining service life of the structure can be estimated. In this paper, 1)the statistical analysis of vehicle type, weight and headway time etc. to analysis randomness of traffic flow, 2)measuring and analysis of stress history of a real bridge, 3)reappearance of stress history by Monte-Carlo Simulation using constitution ratio of vehicle type, weight and headway time as probabilitic variable, 4)comparision of the calculated and modelled stress history, 5)calculation of reduction factor, 6)comparision of frequency of stress range depending on span length etc. were performed. From the results, the basic modelled stress history which is necessary for the method of estimation of the remaining service life of the structure could be suggested.

  • PDF

System Reliability Analysis for Multiple Failure Modes of Piezoelectric Energy Harvester Using Generalized Complementary Intersection Method (Generalized Complementary Intersection Method를 이용한 압전 에너지 수확 장치의 다중 파손모드에 대한 시스템 신뢰성 해석)

  • Yoon, Heonjun;Youn, Byeng D.;Kim, Heung-Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.544-544
    • /
    • 2014
  • Energy harvesting technology, which scavenges electric power from ambient, otherwise wasted, energy sources, has been explored to develop self-powered wireless sensors and possibly eliminate the battery replacement cost for wireless sensors. Among ambient energy sources, vibration energy can be converted into electric power through a piezoelectric energy harvester. For the last decade, although tremendous advances have been made in design methodology to maximize harvestable electric power under a given vibration condition, the research in reliability assessment to ensure durability has been stagnant due to the complicated nature of the multiple failure modes of a piezoelectric energy harvester, such as the interfacial delamination, fatigue failure, and dynamic fracture. Therefore, this study presents the first-ever system reliability analysis for multiple failure modes of a piezoelectric energy harvester using the Generalized Complementary Intersection Method (GCIM), while accounts for the energy conversion performance. The GCIM enables to decompose the probabilities of high-order joint failure events into probabilities of complementary intersection events. The electromechanically-coupled analytical model is implemented based on the Kirchhoff plate theory to analyze its output performances of a piezoelectric energy harvester. Since a durable as well as efficient design of a piezoelectric energy harvester is significantly important in sustainably utilizing self-powered electronics, we believe that technical development on system reliability analysis will have an immediate and major impact on piezoelectric energy harvesting technology.

  • PDF

Logicality Estimate for Domestic the Periodic Replacement Criteria of CWR based on Accumulated Passing Tonnage (누적통과톤수에 의한 국내 레일교체기준의 타당성 평가)

  • Park, Yong-Gul;Suh, Sang-Kyo;Choi, Jung-Youl
    • Journal of the Korean Society for Railway
    • /
    • v.11 no.3
    • /
    • pp.326-333
    • /
    • 2008
  • This study is objected by presenting preliminary data to revise the periodic replacement criteria of continuous welded rail (CWR) in using. In this study, it is investigated information resources for foreign standards, the cause and types of damage in welded rails and the track maintenance history of Seoul metro to analysis the correlation between rail failure and accumulated passing tonnage. Also, it is performed bending test for the laid welded rail reaching the periodic replacement criteria. In result, the correlation between rail failure and accumulated passing tonnage is not obvious and it is a lot of cases for the construction error of welded rail. Also, as a result of bending test of laid welded rail, according to reducing about $17{\sim}18%$ the bending fracture strength of rail, the laid welded rail reaching the periodic replacement criteria is well enough ensured for the load carrying capacity of rail.

Electrical Resistance Measurement in Characterizing the Internal Damage of Carbon Nanotube/Polypropylene Nanocomposites (전기저항 측정법을 이용한 탄소나노튜브/폴리프로필렌 나노복합재료의 내부 손상 예측)

  • Kim, Hak-Soo;Kwon, Dong-Jun;Wang, Zuo-Jia;Gu, Ga-Young;Kim, Dae-Sik;Lee, Chun-Soo;Park, Joung-Man
    • Composites Research
    • /
    • v.26 no.3
    • /
    • pp.201-206
    • /
    • 2013
  • The electrical resistance measurement was investigated as a damage monitoring method. In this study, 0.5 wt% Carbon nanotube reinforced polypropylene (CNT/PP) composites were evaluated under compressive fatigue loading. The shape of specimens was $20^{\circ}$ curved round type. Compression strength and electrical resistance were measured at different sections of specimen during compression. The microcracks of CNT/PP composites were detected based on the changing ratio of electrical resistance. Micro-damage during compressive fatigue test could be detected by electrical resistance measurements. The reason is that the contact points of CNTs in composites decreased under fatigue loading. During compressive fatigue test, larger change of electrical resistance was detected at the microcrack sections. It was proved that microcracks could be detected by electrical resistance measurement under compression test, whereas the real delamination parts were consistent with the predicted results by electrical resistance measurement.