• Title/Summary/Keyword: 피로크랙

Search Result 142, Processing Time 0.03 seconds

Threshold Condition for the Propagation of Short Fatigue Crack (炭素鋼 微小疲勞크랙 전파의 不限界條件)

  • 김민건
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.3
    • /
    • pp.505-512
    • /
    • 1988
  • Since the propagation of a short fatigue crack is directly related to the large crack which causes the fracture of bulk specimen, the detailed study on the propagation of the short crack is essential to prevent the fatigue fracture. However, a number of recent studies have demonstrated that the short crack can grow at a low applied stress level which are predicted from the threshold condition of large crack. In present study, the threshold condition for the propagation of short fatigue crack is examined with respect to the microstructure and cyclic loading history. Specimens employed in this study were decarburized eutectoid steels which have various decarburized ferrite volume fraction. Rotating bending fatigue test was carried out on these specimens with the special emphasis on the '||'&'||'quot;critical non-propagating crack length.'||'&'||'quot; It is found that the reduction of the endurance limit of their particular microstructures can be due to the increase of the length of critical non-propagating crack, and the quantitative relationship between the threshold stress .DELTA. .sigma. $_{th}$ and the critical non-propagating crack length Lc can be written as .DELTA. .sigma. $_{th}$, Lc=C where m, C is constant. Further experiments were carried out on the effect of pearlitic structure and cyclic loading history on the length of critical non-propagating crack. It is shown that the length of critical non-propagating crack is closely related to both pearlite interlamellar spacing and cyclic loading history.ory. cyclic loading history.

Effect of a Matrix Structure on the Initiation of Fatigue Crack and Fatigue Strength in Nodular Graphite Cast Iron (구상흑연 주철재의 피로크랙 발생 및 피로강도에 미치는 기지조직의 영향)

  • Yoon, Myung-Jin;Lee, Kyoung-Mo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.5
    • /
    • pp.66-71
    • /
    • 1998
  • It is required the superior materials for the parts of machines or structures, which could be endurable in severe load and environment. According to advancement of casting technology, nodular graphite cast iron is used as suitable for such condition. But nodular graphite cast iron is scattering of fatigue strength and low reliability. Therefore in this study, the effect of matrix structure and number of nodular graphite on the initiation of fatigue crack and fatigue strength. It was found that the material which has relatively high ferrite volume fraction was more easily cracked than other materials and fatigue limit was low. The material which has not found pinhole on the surface, the crack was initiated in graphite went through ferrite and propagated into through graphite, but separated graphite and ferrite grain boundary and combined with other cracks to fro large one.

  • PDF

Quantitative Study on Threshold Condition of Critical Non-propagating Crack (임계정류피로크랙의 하한계 전파조건의 정량적 고찰)

  • Kim, Min-Gun
    • Journal of Industrial Technology
    • /
    • v.30 no.B
    • /
    • pp.17-23
    • /
    • 2010
  • Since the propagation of a short fatigue crack is directly related to the large crack which causes the fracture of bulk specimen, the detailed study on the propagation of the short crack is essential to prevent the fatigue fracture. However, a number of recent studies have demonstrated that the short crack can grow at a low applied stress level which are predicted from the threshold condition of large crack. In present study, the threshold condition for the propagation of short fatigue crack is examined with respect to the micro-structure and cyclic loading history. Specimens employed in this study were decarburized eutectoid steels which have various decarburized ferrite volume fraction. Rotating bending fatigue test was carried out on these specimens with the special emphasis on the "critical non-propagating crack length" It is found that the reduction of the endurance limit of their particular micro-structures can be due to the increase of the length of critical non-propagating crack, and the quantitative relationship between the threshold stress ${\sigma}_{wo}$ and the critical non-propagating crack length $L_c$ can be written as ${\sigma}_{wo}{^m}{\cdot}L_c=C$ where m,C is constant. Further experiments were carried out on cyclic loading history on the length of critical non-propagating crack. It shown that the length of critical non-propagating crack is closely related to cyclic loading history.

  • PDF

A Study on the Life Span Prediction of Railroad Wheels caused by Rolling Contact Fatigue (철도차륜의 구름접촉피로에 의한 수명예측에 관한 연구)

  • Chun, C.K.;Yang, J.S.;Park, S.J.;Yi, G.S.;Ma, Y.S.
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.6
    • /
    • pp.1012-1020
    • /
    • 2006
  • The crack that occurs on the wheels of railroad cars can be categorized into a surface crack that starts from the surface or a subsurface crack that starts from the inside and can be detrimental to safe railroad operations. Therefore, estimating the growth life span of this type of crack is very important. In this research, the stress distributions, displacements, and the growth-life spans of both surface cracks and subsurface cracks have been studied. By using the finite element analysis, especially in the life span prediction process, the stress conditions and the stress intensity factors of the crack tip have been discovered. The Paris formula has been used to analyze the growth-life span prediction.

  • PDF

Numerical Fatigue Life Prediction of IGBT Module for Electronic Locomotive (수치해석을 이용한 전동차용 IGBT 모듈의 피로 수명 예측)

  • Kwon, Oh Young;Jang, Young Moon;Lee, Young-ho;Choa, Sung-Hoon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.24 no.1
    • /
    • pp.103-111
    • /
    • 2017
  • In this study, the thermomechanical stress and fatigue analysis of a high voltage and high current (3,300 V/1200 A) insulated gate bipolar transistor (IGBT) module used for electric locomotive applications were performed under thermal cycling condition. Especially, the reliability of the copper wire and the ribbon wire were compared with that of the conventional aluminum wire. The copper wire showed three times higher stress than the aluminum wire. The ribbon type wire showed a higher stress than the circular type wire, and the copper ribbon wire showed the highest stress. The fatigue analysis results of the chip solder connecting the chip and the direct bond copper (DBC) indicated that the crack of the solder mainly occurred at the outer edge of the solder. In case of the circular wire, cracking of the solder occurred at 35,000 thermal cycles, and the crack area in the copper wire was larger than that of the aluminum wire. On the other hand, when the ribbon wire was used, the crack area was smaller than that of the circular wire. In case of the solder existing between DBC and base plate, the crack growth rate was similar regardless of the material and shape of the wire. However, cracking occurred earlier than chip solder, and more than half of the solder was failed at 40,000 cycles. Therefore, it is expected that the reliability of the solder between DBC and base plate would be worse than the chip solder.

The Behavior of Fatigue Crack Propagation between the Holes or Another Materials (구멍 또는 이물질 사이를 통과하는 피로크랙 전파거동)

  • 조재웅;김상철;이억섭
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.2
    • /
    • pp.382-392
    • /
    • 1990
  • This study investigates the behavior of fatigue crack propagating between holes of holes filled with another materials. When holes of the holes filled with another materials are located symmetrically near a center crack, it is noted that the crack propagation rate is influenced by both the bonding force of the brazing part and the elastic modulus of another material. It is experimentally and analytically confirmed that the center crack stops when its tip reaches near the center line of the holes and a small crack is initiated from the boundaries of holes of the holes filled with another materials and it propagates to final fracture.

Fatigue Crack Propagation Characteristics of Duplex Stainless Steel Weldments (I) (이상계 스테인리스강 용접부의 피로크랙 전파특성 (I))

  • 권종완;김상태;이택순
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.4
    • /
    • pp.738-746
    • /
    • 1988
  • Fatigue crack propagation of duplex stainless steel weldments was studied to develop further phenomenological understanding of the influences of welding heat cycle accompanying microstructural changes. Fatigue tests were carried out under constant amplitude of load in air at room temperature. The results showed that the crack propagation rate was different in base metal, heat affected zone and welding line. The crack propagation behavior in each part of duplex stainless steel was strongly dependent on phase ratio(.gamma../.alpha.) and several factors of microstructure also affected this propagation behavior. The fractographic feature in each part of steel were discussed on crack propagation behaviors.

Behavior of Fatigue Crack Propagation from Surface Flaw (表面欠陷 에 發생하는 疲勞크랙擧動)

  • 송삼홍;오환섭
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.9 no.2
    • /
    • pp.150-157
    • /
    • 1985
  • In terms of behavior of fatigue cracks propagated after build-up around the artificial drilled miro-hole, this study has been made of the build-up process of slips and micro cracks, behavior of micro-crack propagation and the definition of fatigue limit under the rotating bending stress with low carbon steel. The results of this study are as follows: (1) The fatigue limit is the repropagating critical stress for the nonpropagating cracks which have grown to some limit around the micro-hole in regard of the magnitude of micro-hole. (2) Behavior of the slips and micro-cracks initiation are occurring simultaneously in front and in rear of micro-hole tips in the view of the rotational direction, regardless of the magnitude of micro-hole. (3) Behavior of fatigue crack propagation is different from magnitude of micro-hole, its behavior is propagation of single crack about respectively large hole, but about respectively small hole, fatigue crack propagated joining phenomena of micro-cracks. (4) The behavior of fatigue fracture is affected by the factor of its defects in the view of magnitude of micro-hole when the diameter of the micro-holes are smaller than 50.mu.m, and this is also affected with the size effect of micro-hole diameter.

A Study on the Probabilistic Nature of Fatigue Crack Propagation Life(II) -The Distribution of Crack Propagation Rate- (피로크랙 진전수명의 확률특성에 관한 연구 II)

  • 윤한용
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.6
    • /
    • pp.1561-1567
    • /
    • 1990
  • Recently, some reports of experimental research on the distribution of fatigue crack propagation rate have been published, and the reliability evaluation using the results of research for the mechanical structure has been executed. Since the thicknesses of specimens used in the published reports are limited to the thin ones, the applicability of the results into the mechanical structure with another thickness seems to be doubtful. That is, not only the quantitative evaluation, but also qualitative evaluation of the effect of specimen thickness has not been executed. In this study, an experimental investigation has been done by using the new type automated multi-stage fatigue testing machine which was developed by the author. The influence of specimen thickness for the distribution of fatigue crack propagation rate with the results is discussed.

A Study on the Fatigue Crack Propagation Behavior in F.F. Shaft Materials of Vehicle with Small Circular Defect at Variable Temperature (미소원공결함을 갖는 자동차 전류구동축재의 온도변화에 따른 피로크랙전파거동에 관한 연구)

  • Lee, S.R.;Lee, D.G.;Chung, J.K.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.6
    • /
    • pp.185-194
    • /
    • 1998
  • In this study, the rotary bending fatigue test was carried out with two kinds of material, S43C and S50C, using in the Front engine and Front drive wheels(F.F.) of vehicle. The one part of specimens was heated by high frequency induction method(about 1mm depth and $H_RC$ 56~60) and tested environment temperature were $-30^{\circ}C$, $+25^{\circ}C$ and $+80^{\circ}C$ in order to look over the influence of the heat treatment and the temperatures. In the experimented result at $+25^{\circ}C$ and $+80^{\circ}C$, the fatigue life of non-heated specimens were decreased about 35%, but that of heated specimens were decreased about only 5% at $+80^{\circ}C$ more than at $25^{\circ}C$. And in the experiment result at $-30^{\circ}C$ and $+25^{\circ}C$, the non-heated and heated specimens were about 110%, 120% higher fatigue life at $-30^{\circ}C$ than at the $+25^{\circ}C$ each other. On the other hand, the fatigue crack propagation rate of S50C was higher than that of S43C.

  • PDF