• Title/Summary/Keyword: 피로수명비

Search Result 204, Processing Time 0.031 seconds

The Characteristics of Fatigue Cracks Emanating from Micro Hole Defects Located Opposite Position of the Shaft Cross Section (축 단면 내 대칭 위치의 미소 원공 결함에서 발생한 피로균열 특징)

  • Song, Sam-Hong;Bae, Jun-Su;Ahn, Il-Hyuk
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.211-216
    • /
    • 2001
  • The components with the circular cross section have the symmetric combination parts for rotating balance and the crack emanates from the symmetric combination parts. The symmetric cracks from symmetric combination parts make a decrease in the component fatigue life more than single crack. In this study, to estimate the behavior of symmetric cracks, the fatigue test was performed using rotary bending tester on the specimen with a symmetric defects in circular cross section. The material used in this study is Ni-Cr-Mo steel alloy. Under the same stress, the result from the rotary bending fatigue test turned out that the symmetric cracks made a decrease in the fatigue life by 35% more than single crack and the relation between log a and cycle ratio $N/N_f$ obtained linearly.

  • PDF

High Temperature Fatigue Life Prediction for Welded Joints of Recuperator Material for UAV (무인기용 레큐퍼레이터 소재의 용접부에 대한 고온 피로수명 예측)

  • Lee, Sang-rae;Kim, Jae-hwan;Kim, Jae-hoon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.2
    • /
    • pp.111-117
    • /
    • 2019
  • An experimental study on the welding part of a heat transfer plate that constitutes the lightweight and high efficiency recuperator is presented in this paper. In particular, to find out the service life of the welded part, fatigue characteristics were determined through experiments. Experiments were carried out on two materials (STS347, AL20-25 + nb), which are selected as the material of the recuperator; further, the specimens were manufactured through the methods used for actual fabrication and the standards recommended by ASTM. To evaluate the mechanical properties of the specimens at room and high temperature, MTS-810 was used in a high-temperature furnace. The tensile test was carried out at room and high temperatures for each specimen. The fatigue test was carried out by setting the load ratio corresponding to 50%, 40%, 30%, 20%, and 10% of the tensile strength at the stress ratio of 0.1. Finally, the fatigue life characteristics obtained by the experiment were compared with the stresses owing to the load generated in the operating conditions of the recuperator, and the lifetime of the welds was evaluated to prepare for the operation time required by the UAV.

A Study on the VHCF Fatigue Behaviors of Hydrogen Attacked Inconel 718 Alloy (수소취화된 인코넬 718의 VHCF(Very High Cycle Fatigue) 피로특성에 관한 연구)

  • Suh, Chang-Min;Nahm, Seung-Hoon;Kim, Jun-Hyong;Pyun, Young-Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.7
    • /
    • pp.637-646
    • /
    • 2016
  • This study is to investigate the influence of hydrogen attack and UNSM on fatigue behaviors of the Inconel 718 alloy. The decrease of the fatigue life between the untreated and the hydrogen attacked material is 10-20%. The fatigue lives of hydrogen attacked specimen decreased without a fatigue limit, similar to those of nonferrous materials. Due to hydrogen embrittlement, about 80% of the surface cracks were smaller than the average grain size of $13{\mu}m$. Many small surface cracks caused by the embrittling effect of hydrogen attack were initiated at the grain boundaries and surface scratches. Cracks were irregularly distributed, grew, and then coalesced through tearing, leading to a reduction of fatigue life. Results revealed that the fatigue lives of UNSM-treated specimens were longer than those of the untreated specimens.

Evaluation Technique of Nonlinear dynamic Viscoelasticity During Fatigue Process for Polymeric materials (고분자재료의 피로과정에서의 비선형 동적 점탄특성 평가법)

  • 조남주
    • The Korean Journal of Rheology
    • /
    • v.9 no.3
    • /
    • pp.97-102
    • /
    • 1997
  • 내피로성은 기계적 구조물로 사용되는 고분자재료에는 반드시 필요한 성질이며, 피 로거동은 재료특유의 비선형 동적 점탄특성과 아주 밀접한 관계가 있다. 본 연구에서는 피 로과정에서의 비선형 동적 점탄특성을 정량적, 연속적으로 측정할수 있는 시험 기기와 가해 준 변형에 대한 응답 응력파의 기본 응력파(선형적 응답)로부터의 차이를 직접 측정하여 이 를 규격화한 비선형 점탄성파라미터, NVP(Nonlinear Viscoelastic Parameter)라 명명한 새 로운 평가방법을 개발하였다. 그리고 고밀도 폴리에틸렌(HDPE) 배향물을 사용하여 그 평가 방법의 타당성을 조사한 결과 피로과정에서의 비선형동적 점탄특성을 나타내는 NVP가 증 가함에 따라 재료의 피로수명은 감소하였다. 따라서 NVP가 고분자재료의 내피로성을 평가 하는 척도로서 사용가능하다는 사실이 증명되었다. 또한 각 고조파 성분에대해 조사한 결과 인장형 피로시험양식에서는 고체입자 분산계의 전단변형에서 나타난 비선형 점탄성의 결과 와는 달리 2차 성분의 크기가 가장컸으며 NVP에의 기여도도 가장 크게 나타났다. 이는 변 형양식의 차이에 따른 결과를 볼수 있다.

  • PDF

The Fatigue Analysis for the Flexible Tube of Automobile (승용차용 플렉서블 튜브의 피로 해석)

  • Kim, Jin-Bong
    • Proceedings of the KAIS Fall Conference
    • /
    • 2010.11b
    • /
    • pp.813-816
    • /
    • 2010
  • 본 논문에서는 자동차 배기계를 구성하고 있는 Flexible Tube의 형상에 따른 응력 해석 결과를 이용하여 피로 해석을 하였다. 아울러 Flexible Tube의 변위량이 크게 발생하는 것을 고려하여 기하학적 비선형 해석을 실시하였으며 Flexible Tube의 변형량은 끝단에서 6mm의 변위가 발생하도록 하였다. 본 연구에서 얻어진 결과는 다음과 같다. (1) Tube의 반경이 증가하면 피로한계 응력반복수는 선형적으로 감소한다. (2) 본 연구에서 사용된 tube중 주름의 반경이 1.7mm일때 피로 수명이 가장 긴 것을 알 수 있다.

  • PDF

Analysis on fatigue life distribution of composite materials (복합재료 피로 수명 분포에 관한 고찰)

  • 황운봉;한경섭
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.4
    • /
    • pp.790-805
    • /
    • 1988
  • Static strength and fatigue life scattering of glass fiber reinforced epoxy composite materials has been studied. Normal, lognormal, two-parameter and three-parameter Weibull distribution functions are used for strength and one-stress fatigue life distribution. The value of mean fatigue life is analysed using mean fatigue life, mean log fatigue life and expected value of 2 and 3-parameter Weibull distribution functions. Modification on non-statistical cumulative damage models is made in order to interpret the result of two-stress level fatigue life scattering. The comparison results show that 3-parameter Weibull distribution has better predictions in static strength and one-stress level fatigue life distributions. However, no advantage of 3-parameter Weibll distribution is found over 2-parameter Weibull distribution in two-stress level fatigue life predictions. It is found that two-stress level fatigue life prediction by the expanded equal rank assumption is close to the experimental data.

A study on simplified fatigue design methodology for composite structures (복합재구조물에 대한 단순화된 수명평가방법 고찰)

  • 김성준
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.10a
    • /
    • pp.75-78
    • /
    • 2002
  • A simplified methodology is presented to predict fatigue life and residual strength of composite structures. To avoid excessive amount of tests that are required for model characterization, strength degradation parameter is assumed as function of fatigue life. S-N curve is used to extract fatigue life that is required to characterize the stress levels comprising a randomly-ordered load spectrum. And different stress ratios are handled with Goodman correction approach(fatigue envelope). It is assumed that the residual strength is a function of the number of loading cycles and applied fatigue stress amplitude. And the residual strength distribution after an arbitrary load cycles is represented by two parameter Weibull functions.

  • PDF

A Study on the Shear Behavior of Reinforced Concrete Structures (철근(鐵筋)콘크리트 구조물(構造物)의 전단거동(剪斷擧動)에 관한 연구(研究))

  • Chang, Dong Il;Kwak, Kae Hwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.7 no.1
    • /
    • pp.83-92
    • /
    • 1987
  • Fatigue fracture of reinforced concrete structures are characterized by considerably larger strains and microcracking as compared to fracture of R.C. structures under static loading. The strain of stirrup is increased suddenly by the occuring of inclined crack and the average strain ${\epsilon}_{\omega}$ of all stirrups in a structure at maximum load increase approximately in proportion to log N. The structures critical in longitudinal reinforcement seemed to have an endurance limit of 60~70 percent of static ultimate strengths for 1,000,000 cycles. In this test, the average fatigue strength at 1,000,000 cycles for all structures tested was approximately 65 percent of the static ultimate strength.

  • PDF

Analytical Study on Fatigue Behavior of Resilient Pad for Rail Fastening System (레일체결장치용 방진패드의 피로거동에 관한 해석적 연구)

  • Choi, Jung-Youl
    • The Journal of the Convergence on Culture Technology
    • /
    • v.7 no.2
    • /
    • pp.405-410
    • /
    • 2021
  • In this study, a finite element analysis was performed applying a nonlinear material model and fatigue load conditions to evaluate the service life and spring stiffness of the resilient pad for rail fastening system. As a result of the fatigue analysis, the rate of change in spring stiffness compared to the initial condition was about 16%, indicating that fatigue hardening occurred. As for the stress generated in the longitudinal direction of the resilient pad, the difference between the stress generated at the center and the edge was about 10 times or more. In addition, it was analyzed that the equivalent stress of the outer boundary was more than twice as large as that of the central part. Therefore, it was analyzed that the damage and deformation of the resilient pad are the corners of the resilient pad under actual service conditions. The fatigue life diagram of the resilient pad (S-N curve) was derived using the equivalent stress of the resilient pad according to the fatigue cycles. Using the fatigue life diagram of the resilient pad derived in this study, it is considered that it can be used to predict the fatigue life under the relevant conditions by calculating the equivalent stress of the resilient pad under various load conditions.

Reliability Analysis of Fatigue Truck Model Using Measured Truck Traffic Statistics (통행차량 특성을 반영한 강교량 피로설계트럭의 피로파괴 신뢰도해석)

  • Shin, Dong Ku;Kwon, Tae Hyung;Park, Young Suk
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.2
    • /
    • pp.211-221
    • /
    • 2007
  • A structural reliability analysis of fatigue truck model for fatigue failure of highway steel bridges was performed by applying the Miner's fatigue damage rule expressed as a function of various random variables affecting fatigue damage. Among the variables, the statistical parameters for equivalent moment, impact factor, and loadometer were obtained by analyzing recently measured domestic traffic data, whereas the parameters on fatigue strength, girder distribution factor, and headway factor of the measured data available in the literature were used. The effects of various fatigue truck models, fatigue life, ADTT, fatigue detail category, loadometer, and gross vehicle weight of fatigue truck on the reliability index of fatigue damage were analyzed. It is expected that the analytical results presented herein can be used as a basic background material in the calibration of both fatigue design truck and fatigue load factor of LRFD specification.