• Title/Summary/Keyword: 피로손상

Search Result 594, Processing Time 0.032 seconds

Assessment of Fatigue Damage of Adhesively Bonded Composite -Metal Joints by Acousto-Ultrasonics and Acoustic Emission (음향초음파와 음향방출에 의한 복합재료-금속 접착접합부의 피로손상 평가)

  • Kwon, Oh-Yang;Lee, Kyung-Joo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.21 no.4
    • /
    • pp.425-433
    • /
    • 2001
  • A correlation between fatigue damage and acousto-ultrasonic (AU) parameters has been obtained from signals acquired during fatigue loading of the single-lap joints of a carbon-fiber reinforced plastic (CFRP) laminates and A16061 plate. The correlation showed an analogy to those representing the stiffness reduction $(E/E_0)$ of polymer matrix composites by the accumulation of fatigue damage. This has been attributed to the transmission characteristics of acoustic wave energy through bonded joints with delamination-type defects and their influence on the change of spectral content of AU signals. Another correlation between fatigue cycles and the spectral magnitude of acoustic emission (AE) signals has also been found during the final stage of fatigue loading. Both AU and AE can be applied almost in real-time to monitor the evolution of damage during fatigue loading.

  • PDF

Shear Damage Behavior of Reinforced Concrete Beams under Fatigue Loads (반복하중을 받는 철근콘크리트보의 전단피로손상거동)

  • 오병환;한승환;이형준;김지상;신호상
    • Magazine of the Korea Concrete Institute
    • /
    • v.10 no.1
    • /
    • pp.143-151
    • /
    • 1998
  • 최근들어 반복하중에 의한 철근콘크리트 구조물의 손상이 자주 발견되고 있으며 교량 등의 구조물 등은 때때로 과적차량에 의한 초과하중을 받아 이러한 피로손상이 심화되고 있다. 본 연구에서는 이러한 반복 하중을 받는 철근 콘크리트보의 누적피로손상에 대한 실험적 연구룰 수행하여 피로하중에 의한 철근콘크리트보의 손상과정을 규명하였다. 실험 변수를 전단철근의 양과 반복되는 하중의 크기 및 반복횟수로 하여 실험부재를 제작하였으며, 하중제어에 의한 휨시험법에 의해 3Hz의 반복하중을 시편에 재하하였다. 사인장 균열하중과 사인장 균열 후 반복하중에서의 보의 손상누적거동 즉 처짐. 전단철근의 변형도, 에너지 손실 등의 변화를 실험적으로 평가하였으며, 이를 통하여 반복하중에 의한 누적손상에 의해 철근 콘크리트보의처짐 및 전단변형도가 초기하중상태에서는 급격히 증가하다가 이후 점진적으로 증가하는 것을 규명하였다. 본 연구의 결과는 사용하중상태에서 점진적으로 발생할 수 있는 피로손상의 누적과정을 기술하여 주고 있다.

Study on Fatigue Damage Model and Multi-Stress Level Fatigue Life Prediction of Composite Materials (II) -Fatigue Damage Model using Reference Modulus- (복합재료의 피로손상 모형 및 다응력 수위 피로수명 예측 연구 (II) - 참고계수를 이용한 피로 손상 모형 -)

  • 이창수;황운봉;한경섭
    • Composites Research
    • /
    • v.12 no.2
    • /
    • pp.62-69
    • /
    • 1999
  • During fatigue loading of composite materials, damage accumulation can be monitored by measuring their material properties. In this study, fatigue modulus is used as the damage index. Fatigue life of composite materials may be predicted analytically using damage models which are based on fatigue modulus and resultant strain. Damage models are propesed as funtions of applied stress level, number of fatigue cycle and fatigue life. The predicted life was comparable to the experimental result obtained using E-glass fiber reinforced epoxy resin materials and pultruded glass fiber reinforce polyester composites under two-stress level fatigue loading.

  • PDF

A Study on Prediction of Fatigue Damage Crack Growth for Stiffener Bonded Composite Laminate Panel (보강재 본딩접합 복합재 적층판구조 피로손상 균열진전 수명예측에 대한 연구)

  • Kwon, Jung-Ho;Jeong, Seong-Moon
    • Composites Research
    • /
    • v.26 no.2
    • /
    • pp.79-84
    • /
    • 2013
  • The prediction and analysis procedure of fatigue damage crack growth life for a stiffener bonded composite laminate panel including center hole and edge notch damage, was studied. It was performed on the basis of fatigue damage growth test results on a laminated skin panel specimens and the analysis results of stress intensity factor for the stiffener bonded composite panel. According to the comparison between experimental test and prediction results of fatigue damage growth life, it was concluded that the residual strength and damage tolerance assessment can be carried out along to the edge notch crack growth.

The Study on Fatigue Design Loads of Steel Highway Bridges (강도로교의 피로설계하중에 관한 연구)

  • Kim, Sang Hyo;Lee, Chang Yong
    • Journal of Korean Society of Steel Construction
    • /
    • v.9 no.2 s.31
    • /
    • pp.159-169
    • /
    • 1997
  • Recently, due to the increasing overloaded heavy vehicles and traffic volumes fatigue failures of steel highway bridges frequently occur. Therefore, it is important to decide rational fatigue design procedure which can reflect lifetime cumulative fatigue damage reasonably. In this study, cumulative fatigue damages are simulated for various bridge systems and traffic conditions. The AASHTO LRFD fatigue design procedure is reviewed and the current fatigue design loading format, in which a single representative truck is loaded regardless of bridge width, is found to yield inconsistent safety level. Improved loading format with rational design load level for fatigue design is suggested.

  • PDF

A Cumulative Damage Theory of Concrete under Variable Amplitude Fatigue Loadings (변동진폭(變動振幅)의 피로하중(疲勞荷重)을 콘크리트의 누적손상이론(累積損傷理論))

  • Oh, Byung Hwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.6 no.4
    • /
    • pp.79-88
    • /
    • 1986
  • A nonlinear cumulative damage theory, which can model the effects of the magnitude and sequence of variable amplitude fatigue loadings, is proposed. The concrete beam specimens are prepared and tested in four-point flexural loading conditions. The variable-amplitude fatigue loadings in two and three stages are considered. The present experimental study indicates that the fatigue failure of concrete is greatly influenced by the magnitude and sequence of applied, variable-amplitude fatigue loadings. It is seen that the linear damage theory proposed by Palmgren and Miner is not directly applicable to the concrete under such loading cases. The sum of the cumulative damage is found to be greater than 1 when the magnitude of fatigue loading is gradually increased and less than 1 when the magnitude of fatigue loading is gradually decreased. The proposed nonlinear damage theory, which includes the effects of the magnitude and sequence of applied fatigue loadings, allows more realistic fatigue analysis of concrete structures.

  • PDF

Repair of Fatigue Damage of Coped Stringers in Railway Truss Bridge (트러스 철도교에서 피로손상이 발생한 절취된 세로보의 보강방법)

  • Kim, Ki-Du;Jeon, Jun-Chang;Hwang, Yoon-Koog;Chang, Dong-Il
    • Journal of Korean Society of Steel Construction
    • /
    • v.8 no.4 s.29
    • /
    • pp.95-103
    • /
    • 1996
  • 단순 전단연결 구조를 가진 강철도교의 세로보 단부의 절취부위에서 많은 피로균열이 발견되었으며, 이러한 부위의 피로균열은 피로손상의 전형적인 예이다. 피로균열을 가진 세로보 절취부위의 보강방법을 연구하기 위하여 가로보 및 세로보의 상부 플랜지에 인장판을 부착한 경우와 부착하지 않은 경우로 구분하여 피로실험을 수행하였다. 피로실험에 사용된 하중은 현장에서 측정된 실동응력을 기초하여 빈도해석을 통해 산정하였다. 피로실험 결과, 인장판으로 보강한 모멘트 저항 연결구조상세가 철도교에서 균열성장을 효과적으로 정지시킬 수 있는 것으로 판명되었으며, 피로손상을 가진 절취부위의 보강방법으로 제시될 수 있을 것으로 사료된다.

  • PDF

A Study on ULCS Fatigue Damage Considering the Variation of Cargo Weight Distribution (화물 중량 분포 변화에 따른 초대형 컨테이너선의 피로 손상에 대한 연구)

  • Yi, Minah;Choi, Shin-pyo;Park, Jun-bum
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.4
    • /
    • pp.667-679
    • /
    • 2022
  • Fatigue damage analysis of ships includes parameters considering operational factors. Due to these operational variables, there is a difference between the fatigue damage estimated during the design stage and the actual accumulated fatigue damage. Likewise, there are various loading conditions for the real container ships, but at design stage the fatigue damage is calculated by applying the representative loading conditions. Moreover, although the difference in fatigue damages is expected when the actual and design loading conditions are applied, there are few studies on the contributions of the fatigue damage based on the loading conditions of container ships. In this paper, fatigue contributions were investigated from various cargo weight distributions. The hull girder loads calculated through seakeeping analysis and fatigue damages obtained by performing spectral fatigue analysis were identified under new loading conditions. As a result, it was found that the variation of cargo weight distribution in the container ship brought about changes in the hull girder loads and fatigue damage by affecting the hull girder stress.

Bending Fatigue Characterization of Al6061 Alloy by Acoustic Nonlinearity of Narrow Band Laser-Generated Surface Wave (협대역 레이저 여기 표면파의 음향버선형성을 이용한 A16061 합금의 굽힘피로손상 평가)

  • Nam, Tae-Hyung;Choi, Sung-Ho;Jhang, Kyung-Young;Kim, Chung-Seok;Lee, Tae-Hun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.2
    • /
    • pp.139-145
    • /
    • 2010
  • Bending fatigue of aluminium alloy was characterized by acoustic nonlinearity of narrow band laser-generated surface wave. The higher harmonic components generated intrinsically by arrayed line laser beam were analyzed theoretically and acoustic nonlinearity was measured successfully on the surface of fatigue damaged aluminium 6061 alloy. The acoustic nonlinearity increased as a function of fatigue cycles and has close relation with damage level. Consequently, the nonlinear acoustic technique of laser-generated surface wave could be potential to characterize surface damages subjected to fatigue.

강교량 용접구조의 피로강도 및 응급보수효과에 관한 연구

  • 장동일;김학수;이명구;홍성욱;송창희
    • Proceedings of the Korean Institute of Industrial Safety Conference
    • /
    • 1997.11a
    • /
    • pp.283-288
    • /
    • 1997
  • 도로와 철도에서 사용되는 강교량에는 최근 차량의 중량화 등에 의해 피로손상이 발생되고 있으며, 이러한 피로손상은 성수대교 붕괴사고나 당산철교 철거등에서와 같이 주로 구조물의 공용중에 발생되기 때문에 이로 인한 사회적$\cdot$경제적 손실은 실로 막대하다. (중략)

  • PDF