• Title/Summary/Keyword: 피로도 평가모델

Search Result 124, Processing Time 0.03 seconds

Statistical Distribution of Fatigue Life of Composite Materials for Small Wind-Turbine Blades (소형풍력발전 블레이드용 복합재료의 피로수명 분포에 대한 확률론적 평가)

  • Kang, Ki-Weon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.10
    • /
    • pp.1281-1289
    • /
    • 2011
  • This paper deals with several statistical distribution functions for the analysis of fatigue life data of composite laminates for small wind-turbine blades. A series of tensile tests was performed on triaxial glass/epoxy laminates for loading directions of $0^{\circ}$, $45^{\circ}$, and $90^{\circ}$. Then, fatigue tests were carried out to determine the fatigue life at the aforementioned loading directions and the fatigue stresses at four levels. Two-parameter Weibull, three-parameter Weibull, normal, and log-normal distributions were used to fit the fatigue life data of the triaxial composite laminates. The three-parameter Weibull distribution most accurately described the fatigue life data measured experimentally for all the cases considered. Furthermore, the variation of fatigue life was simultaneously affected by the loading direction and fatigue stress level.

Damage Tolerance Analysis Using Surrogate Model (근사모델을 사용한 손상허용해석)

  • Jang, Byung-Wook;Im, Jae-Hyuk;Park, Jung-Sun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.4
    • /
    • pp.306-313
    • /
    • 2011
  • The damage tolerance analysis is required to guarantee the structural safety and the reliability for aircraft components. The damage tolerance method, which evaluate the life considering the initial crack, considers a fatigue design model of the aircraft main structure. The fatigue crack growth life should be calculated in damage tolerance analysis and the inspection time to define the replacement cycle. In this paper, the damage tolerance analysis is performed for a turbine wheel which has complex geometry. The equation of the stress intensity factor for complex geometry is hard to know, so that they are usually processed by finite element analysis which takes long time. To solve this problem, the stress intensity factors at specified crack are obtained by the FEA and the crack growth life is evaluated using the surrogate model which is generated by the regression analysis of the FEA data. From the results, the efficiency of the crack growth life calculation and the damage tolerance analysis could be increased by taking the surrogate model.

Fatigue Tests on Transverse Joints of Precast Prestressed Concrete Bridge Deck (프리스트레스를 도입한 프리캐스트 콘크리트 교량 바닥판의 연결부에 관한 피로실험)

  • 정철헌;김영진;장성욱;김철영;심창수
    • Magazine of the Korea Concrete Institute
    • /
    • v.10 no.5
    • /
    • pp.159-165
    • /
    • 1998
  • 중트럭 통행으로 인한 철근콘크리트 교량바닥판의 열화는 교량구조물을 유지보수하는데 있어 심각한 문제 중 하나이며, 프리캐스트 바닥판을 이용한 교량바닥판의 시공 및 교체 방법이 실용적이며 효과적인 방법으로 인식되고 있다. 본 연구에서는 횡방향 ddusruf부에 종방향 프리스트레싱을 도입한 프리캐스트 바닥판의 모델을 제작하여 바닥판간 횡방향 연결부의 강성 평가 및 연결부의 피로 거동을 파악하기 위해서 피로실험을 수행하여 피로하중하에서의 휨강성의 변화, 균열발생 및 파괴하중 등을 측정하였다. 실험결과를 통해서 피로하중하에서 프리스트레스 프리캐스트 부재의 프리스트레스 효과를 평가하였으며, 현장타설에 의해서 시공되는 일반 RC 부재에 비해서 우수한 구조적 거동을 보여주는 적정량의 종방향 프리스트레스 크기를 결정하였다.

A Study for Prediction of Fatigue Life in Membranes of LNG Storage Tanks (LNG 저장탱크용 멤브레인의 피로수명 예측에 관한 연구)

  • Yoon I.S.;Kim J.K.
    • Journal of the Korean Institute of Gas
    • /
    • v.9 no.2 s.27
    • /
    • pp.34-37
    • /
    • 2005
  • The membrane for LNG storage tank behaves linearly in macroscopic view, but behaves elasto-plastically in some local areas, and has the structure undergoing both tension and bending. That is, the membrane is not able to be evaluated with the fatigue characteristics of the material, and it is so difficult to evaluate the membrane with a real big model because of the difficulty of imposing complex loads. Therefore, a prediction formula fur the fatigue life of the membrane is proposed to use for the design of LNG storage tank.

  • PDF

Fatigue Damage Evaluation of Woven Carbon-Fiber-Reinforced Composite Materials by Using Fatigue Damage Model (피로 손상 모델을 이용한 직조 탄소섬유강화 복합재료의 피로 손상 평가)

  • Park, Hong-Sun;Choi, Jung-Hun;Koo, Jae-Mean;Seok, Chang-Sung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.6
    • /
    • pp.757-762
    • /
    • 2010
  • Owing to the high specific strength and stiffness of composite materials, they are extensively used in mechanical systems and in vehicle industries. However, most mechanical structures experience repeated load and fatigue. Therefore, it is important to perform fatigue analysis of fiber-reinforced composites. The properties of composite laminates vary depending upon the stacking sequence and stacking direction. Fatigue damage of composite laminates occurs according to the following sequence: matrix cracking, delamination, and fiber breakage. In this study, fatigue tests were performed for damage analysis. Fatigue damages, which have to be considered in fatigue analysis, are determined by using the stiffness values calculated from hysteresis loops, and the obtained fatigue damage curve is examined using Mao's equation and Abdelal's equation.

A study on the Structural Stability about the Fan Blade by the Air Excited Forces. (공기 가진력에 의한 팬 블레이드 구조 안정성 평가에 관한 연구)

  • 정규강;김경희;조생현
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.4 no.1
    • /
    • pp.93-101
    • /
    • 2000
  • In a gas-turbine engine, fan blades in flow path are confronted with many kinds of loading. The study of the excited force by the wake of struts has proposed and the possibility of fatigue failure about rotating fan blades by the excited force at the steady state is evaluated. Equations of the excited force of wakes has been derived at the steady state and the maximum pressure distributions measured at the transient state are proposed. Dynamic characteristics and the fatigue strength of fan blades by experimental test were obtained. To evaluate HCF(High Cycle Fatigue) damage of fan blades, FEM analysis was performed with a steady state harmonic response, which was followed by high cycle fatigue damage factor from goodman diagram.

  • PDF

A Study on Muscle Fatigue Changes using AR Model-based Median Frequency in EMG (AR모델을 이용한 중앙주파수의 근피로 변화에 관한 연구)

  • Cho, EunSeuk;Cha, Sam;Lee, Sangsik;Lee, Kiyoung
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.2 no.1
    • /
    • pp.17-22
    • /
    • 2009
  • In this paper, we extract well-known parameters such as zero crossing rate(ZCR), low band energy(Band) and median frequency(MDF) from surface electromyogram (EMG), and compare to evaluate themselves as measures for fatigue. In experiments, 3 males and 3 females volunteered to participate in surface EMG recordings placed on the biceps brachii and each recording experiment continued until exhaustion.

  • PDF

A Study on Order Decision of AR Model for Median Frequency in Fatiguing EMG (근피로 중앙주파수를 위한 AR모델의 차수결정에 관한 연구)

  • Cho, Eun Seuk;Cha, Sam;Lee, Ki Young
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.3 no.1
    • /
    • pp.8-12
    • /
    • 2010
  • In this paper, we studied on AR model order decision for extraction of EMG median frequency by t-test and ANOVA and comparison of median frequency. And we extracted well-known parameters such as zero crossing rate(ZCR), low band energy(Band) and median frequency(MDF) from surface electromyogram (EMG). And we compared to evaluate themselves as measures for fatigue.

  • PDF

A Study on the Fatigue Analysis of Glass Fiber Reinforced Plastics with Linear and Nonlinear Multi-Scale Material Modeling (선형과 비선형 다중 스케일 재료 모델링을 활용한 유리섬유 강화 플라스틱의 피로해석 연구)

  • Kim, Young-Man;Kim, Yong-Hwan
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.33 no.2
    • /
    • pp.81-93
    • /
    • 2020
  • The fatigue characteristics of glass fiber reinforced plastic (GFRP) composites were studied under repeated loads using the finite element method (FEM). To realize the material characteristics of GFRP composites, Digimat, a mean-field homogenization tool, was employed. Additionally, the micro-structures and material models of GFRP composites were defined with it to predict the fatigue behavior of composites more realistically. Specifically, the fatigue characteristics of polybutylene terephthalate with short fiber fractions of 30wt% were investigated with respect to fiber orientation, stress ratio, and thickness. The injection analysis was conducted using Moldflow software to obtain the information on fiber orientations. It was mapped over FEM concerned with fatigue specimens. LS-DYNA, a typical finite element commercial software, was used in the coupled analysis of Digimat to calculate the stress amplitude of composites. FEMFAT software consisting of various numerical material models was used to predict the fatigue life. The results of coupled analysis of linear and nonlinear material models of Digimat were analyzed to identify the fatigue characteristics of GFRP composites using FEMFAT. Neuber's rule was applied to the linear material model to analyze the fatigue behavior in LCF regimen. Additionally, to evaluate the morphological and mechanical structure of GFRP composites, the coupled and fatigue analysis were conducted in terms of thickness.

A Study on Fatigue Safety Estimation of Cross Frame of Suspension Bridge(I) - Estimation by Nominal Stress - (현수교 횡프레임의 피로안전성 평가에 관한 연구(I) - 공칭응력에 의한 평가 -)

  • Kyung, Kab Soo;Jeon, Jun Chang;Su, Seok Ku;Yong, Hwan Sun
    • Journal of Korean Society of Steel Construction
    • /
    • v.11 no.4 s.41
    • /
    • pp.397-407
    • /
    • 1999
  • In this paper, the fatigue safety in the suspension bridge is investigated by using nominal and variable stress, respectively. The technique on structural modeling and the fatigue evaluation using nominal stress are mainly dealt with in this paper. To make the finite element analysis model reflecting the actual structural behavior of the suspension bridge with cross frame, the parametric study is carried out. In this study, the influence of supporting condition. the difference of the results of 2- and 3-D analysis and the number of cross frames modelled in are considered. The nominal stress under the real traffic flow of the bridge is calculated by the combination of the stresses due to the unit DB-24 loading. The nominal stresses for details under consideration are compared with allowable stress ranges specified in the codes and the results are discussed.

  • PDF