• 제목/요약/키워드: 피로균열진전속도

검색결과 75건 처리시간 0.019초

자동차 현가장치재의 부식피로수명에 따른 압축잔류응력의 영향 (The Effect of Compressive Residual Stress according to Corrosion Fatigue Life of Automobile Suspension Material)

  • 기우태;박성모;문광석;박경동
    • 한국자동차공학회논문집
    • /
    • 제16권5호
    • /
    • pp.1-7
    • /
    • 2008
  • A study of new materials that are light-weight, high in strength has become vital to the machinery of auto industries. But then, there are a lot of problems with developing such materials that require expensive tools, and a great deal of time and effort. Therefore, the improvement of fatigue strength and fatigue life are mainly focused on by adopting residual stress. And Influence of corrosive condition for corrosion fatigue crack was investigated, after immersing in 3.5%NaCl, $10%HNO_3$+3.5%HF, $6%FeCl_3$. The immersion period was performed for 365days. The compressive residual stress was imposed on the surface according to each shot velocity based on shot peening, which is the method of improving fatigue life and strength. Fatigue life shows more improvement in the shot peened material than in the un peened material in corrosion conditions. The threshold stress intensity factor range was decreased in corrosion environments over ambient. Compressive residual stress of surface on the Shot-peen processed operate resistance force of fatigue crack propagation. The fatigue crack growth rate of the Shot-peened material was lower than that of the un peened material. Also m, fatigue crack growth exponent and number of cycle of the shot peened material was higher than that of the un peened material. That is concluded from effect of da/dN.

7075-T651 AI 합금에 있어서 물리적 미소 표면 피로균열 성장거동에 관한 연구 (A Study on Physically small Surface Fatigue Crack Growth Behavior in 7075-T651 Aluminum Alloy)

  • 신용승;서성원;유헌일
    • 한국정밀공학회지
    • /
    • 제9권1호
    • /
    • pp.106-117
    • /
    • 1992
  • In this study, the propagation behaviour and the closure phenomena of physically small surface cracks were investigated by the techinque of the Kikukawa-unloading elastic compliance method using a back face strain gage. The surface cracks initiated and propagated from notched specimens under constant amplitude bending load. The crack shape (aspect ratio) with approximately semi-circular at the early stage was changed to semi-elliptical as the cracks grew larger. The crack depth (a) could be expressed uniquenly by the crack length (c). The dependence of the crack propagation rate on the stress ratio R was strongly related in the lower ${\Delta}K$ range. The deceleration of the surface crack propagation rate was prominent in lower R during the crack length was small. When the propagation rate was rearranged with the effective stress intensity factor range ${\Delta}$K_{eff} the dependence of the crack propagation rate on the stress ratio R was found to be diminshed. These were caused by the crack closure phenomena that was most prominent at the lower propagation rate. The mechanism of crack closure phenomena was dominated by the plasticity-induced mechanism.

  • PDF

비파괴적 표면조직검사법과 파괴역학 특성에 따른 고속철도용 차륜 답면의 손상 평가 (Damage Evaluation of Wheel Tread for High Speed Train Using Replication and Fracture Mechanics Characteristics)

  • 권석진;이동형;서정원;권성태
    • 대한기계학회논문집A
    • /
    • 제31권7호
    • /
    • pp.756-763
    • /
    • 2007
  • The majority of catastrophic wheel failures are caused by surface opening fatigue cracks either in the wheel tread or wheel flange areas. The inclined cracks at railway wheel tread are initiated and the cracks are caused by wheel damage-spatting after 60,000 km running. Because the failured railway wheel is reprofiled before regular wheel reprofiling, the maintenance cost for the railway wheel is increased. Therefore, it is necessary to analyze the mechanism for initiation of crack. In the present paper, the combined effect on railway wheels of a periodically varying contact pressure and an intermittent thermal braking loading is investigated. To analyze damage cause for railway wheels, the measurements for replication of wheel surface and the effect of braking application in field test are carried out. The result shows that the damages in railway wheel tread are due to combination of thermal loading and ratcheting.

SA516/70 압력용기 강의 저온 피로균열 진전 속도에 미치는 응력비의 영향 (The Effect of Stress Ratio on Fatigue Crack Propagation Rate in SA516/70 Pressure Vessel Steel at Low Temperature)

  • 박경동;김정호;최병국;임만배
    • 한국안전학회지
    • /
    • 제16권1호
    • /
    • pp.18-24
    • /
    • 2001
  • The fatigue crack growth behavior of the SA516/70 steel which is used for pressure vessels was examined experimentally at room temperature, $-60^{\circ}C$,$-80^{\circ}C$ and $-100^{\circ}C$ with stress ratio of R=0.05, 0.1 and 0.3. Fatigue crack propagation rate da/dN related with stress intensity factor range ${\Delta}K$ was influenced by stress ratio in stable of fatigue crack growth (Region II) with an increase in ${\Delta}K$. The resistance of fatigue crack growth at low temperature is higher compared with that at room temperature, which is attributed to the extent of plasticity-induced by compressive residual stress according to the cyclic loads. Fractographic examinations reveal that the differences of the fatigue crack growth characteristics between room and low temperatures are mainly explained by the crack closure and the strengthening due to the plasticity induced and roughness induced.

  • PDF

7075-T735 Al 합금의 피로균열 진전속도와 정류거동에 미치는 응력비의 영향 (The Effect of Stress Ratio on Fatigue Crack Propagation Rate and Arrest Behavior in 7075-T735 Al Alloy)

  • 오세욱;강상훈;허정원;김태형
    • 한국해양공학회지
    • /
    • 제6권1호
    • /
    • pp.131-139
    • /
    • 1992
  • The understanding and appllication of fatigue crack propagation mechanism in variable amplitude loading is very important for life prediction of the air travel structures. Particularly, the retardation and arrest behavior of fatigue crack propagation by single tension overloading is essential to the understanding and appllication of fatigue crack propagation mechanism in variable amplitude loading. Numerous studies of the retardation behavior have been performed, however investigations of the arrest behavior have not been enough yet. As for the arrest behavior, Willenborg had reported that the overload shut-off ratio $[R_{so}=(K_{OL})/K_{max})_{crack arrest}]$ had been the material constant, but recently several investigators have reported that the overload shut-off ratio depends upon the stress ratio. In this study, authors have investigated the effect of stress ratio on the threshold overload shut-off ratio to generate arrest of fatigue crack growth in high tensile aluminum alloy 7075-T735 which have used in material for air travel structures, It has been $-0.4\leqqR\leqq0.4$ till now, the region of stress ratio investigated. The threshold overload shut-off ratio has decreased as stress ratio has increased in overall region of -$-0.4\leqqR\leqq0.4$ and the linearity has been seen in this material. Moreover, the experimental equation between $R_{so}$ and R has been made; The relation has been $R_{so}=-R+2.6$.

  • PDF