• Title/Summary/Keyword: 피로균열성장 하한계조건

Search Result 5, Processing Time 0.018 seconds

혼합모드 I+II 피로 하한계 영역에서의 모드II 영향에 관한 고찰

  • 홍석표;송삼홍;이정무
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.113-113
    • /
    • 2004
  • 실제 사용중인 기계나 기계구조물은 다양한 환경 및 복잡한 설계조건으로 인하여 변동하중과 다축에서 작용하는 혼합모드 하중 상태에 놓이는 경우가 대부분이다. 하지만, 순수 모드 I 하중상태 하에서의 연구는 활발히 이루어졌으나, 실제 구조물에서 대부분 발생하는 혼합모드 하중상태 하에서의 연구는 아직 부족한 실정이다. 또한 기계구조물내의 많은 성분요소에 존재하는 작용 하중 방향에 수직적이지 않게 되며, 초기균열의 균열선상에서 성장하지 않는다.(중략)

  • PDF

Experimental Evaluation of Fatigue Threshold for SA-508 Reactor Vessel Steel (SA-508 압력용기용 강에 대한 피로균열성장 하한계 조건의 실험 평가)

  • Rhee, Hwan-Woo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.4
    • /
    • pp.160-167
    • /
    • 2012
  • This paper is concerned with a particular fracture mechanics parameter ${\Delta}K_{th}$, known as the 'threshold stress intensity range', or 'fatigue threshold'. This threshold ${\Delta}K_{th}$ constitutes, as it were, a hinge between the notion of crack initiation and the notion of crack growth. It has often been thought that, like the endurance limit, it could be an intrinsic criterion of the material. The study was conducted on a SA-508 pressure vessel steel used in the nuclear power industry. This material exhibits a typical threshold effect in the range of the crack growth rates which were determined; that is, below approximately $da/dN=10^{-6}mm/cycle$, the slope of the da./dN versus ${\Delta}K$ curve is almost vertical. The value of ${\Delta}K_{th}$ was determined at a growth rate of $10^{-7}$ mm/cycle according to the ASTM Standard for threshold testing. The fatigue threshold values are in the range 21 $kg/mm^{3/2}$ to 12 $kg/mm^{3/2}$ depending on the stress ratio effect.

Crack Growth Analysis and Crack Arrest Design of Stiffened Panels(III) - Experimental Evaluation of Crack Arrest Design Chart (보강판의 균열거동해석과 Crack Arrest 설계(III) - Crack Arrest Design 차트의 실험평가)

  • Rhee, Eui-Jong;Rhee, Hwan-Woo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.5 no.2
    • /
    • pp.42-48
    • /
    • 2006
  • In order to assess the validity of fatigue crack arrest design charts obtained from our previous numerical approach to fatigue crack arrest condition, an extensive fatigue crack growth/arrest test was performed using CT-type integrally stiffened panels. The results are presented as fatigue crack growth rate and non-dimensional crack length relationship, and these are compared with numerically simulated crack growth rates. The measured values of da/dN at the moment of fatigue crack arrest occurred in stiffened panels are good agreement with those numerically simulated crack growth rates.

  • PDF

Crack Growth Analysis and Crack Arrest Design of Stiffened Panels(I) - Numerical Approaches to Crack Arrest Design Chart (보강판의 균열거동해석과 Crack Arrest 설계(I) - Crack Arrest 설계기준의 수치해석)

  • Rhee, Eui-Jong;Rhee, Hwan-Woo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.4 no.2
    • /
    • pp.43-49
    • /
    • 2005
  • The purpose of a fatigue crack arrest design is to prevent a fatigue fracture of machine and structure resulted from unstable crack growth. In all cases of load transfer to second elements such as stringers, doublers or flanges, crack arrest is possible; arrest occurring when the fatigue crack reaches the second element. In the present work, a numerical analysis was carried out to estimate the effect of shape parameters on fatigue crack growth and arrest behavior of integrally stiffened panels. Based on these results, a set of fatigue crack arrest design chart is presented as "non-dimensional arrest load - thickness ratio" relationship.

  • PDF

Crack Growth Analysis and Crack Arrest Design of Stiffened Panels(II) - Numerical Simulation of Crack Arrest Behavior (보강판의 균열거동해석과 Crack Arrest 설계(II) - Crack Arrest 거동의 시뮬레이션)

  • Rhee, Eui-Jong;Rhee, Hwan-Woo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.4 no.2
    • /
    • pp.50-56
    • /
    • 2005
  • To demonstrate the feasibility of utilizing FCAD chart proposed in our previous work, series of crack growth/arrest behavior in the integrally stiffened panels were simulated by numerical method using upper mentioned FCAD charts and a new crack growth rate equation. It is concluded that proposed family of FCAD curves, in the form of non-dimensional arrest load ranges, are reliable indicators of fatigue crack growth/arrest behavior of integrally stiffened panels considered here.

  • PDF