• Title/Summary/Keyword: 피로강도변화

Search Result 139, Processing Time 0.023 seconds

Study on the Property and Applicability of the Bisphenol-A Type Epoxy Putty According to the Mix of Filler (개발된 Bisphenol-A계 Epoxy Putty의 충전제 배합에 따른 물성 및 적용성에 관한 연구)

  • Wi, Koang-Chul;Oh, Seung-Jun
    • Journal of Conservation Science
    • /
    • v.32 no.4
    • /
    • pp.459-469
    • /
    • 2016
  • The goal of this study was to examine property changes induced by the choice of filler used with an epoxy resin that was developed in 2014 to restore cultural assets and consider the applicability of the resin as a restorative agent. The properties of putty mixed with 9 types of fillers and as-developed resins were compared with those of existing materials with regard to stability, superiority and applicability. The potential of the putty as an alternative material was also examined. The materials produced the best adhesiveness, color change and hardness results when mixed with lime. Micro balloon produced the best wear rates and hardening times, while diatomite produced the best tensile and compressive strengths. A plaster and white mineral pigment mixture produced the best specific gravity. Every material except for lime exhibited about 2.5-20 times higher wear rates than the existing material, which is thought to exhibit an excellent cutting force. The hardening time was enhanced by about 0.5-9 times to improve convenience. The stability of the relic was also ensured by improving hand staining without any shrinkage or deformation. The material exhibited about 0.5-27 times less yellowing. Thus, it is thought to be a material that can reduce property changes and reduce the degree of relic fatigue which occurs during reprocessing and sense of difference from relic.

Minimum Design Thickness of Prestressed Concrete Deck Slabs for Composite Two-Girder Bridges (강합성 2거더교 프리스트레스트 바닥판의 설계 최소두께)

  • Hwang, Hoon Hee;Joh, Changbin;Kwark, Jong Won;Lee, Yong Woo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1A
    • /
    • pp.183-190
    • /
    • 2006
  • Minimizing the self weight of long-span deck slabs is one of the key factors for the practical and economic design of a composite two-girder bridge. In this paper, the minimum design thickness and rebar details of prestressed concrete deck slabs for composite two-girder bridges with girder span length from 4 m to 12 m are studied based on the safety and serviceability. The bridge deck slab with minimum thickness is designed as a one-way slab considering orthotropic behavior. Then fatigue safety of the deck slab is examined. Serviceability requirements for the deck slab such as deflection and crack width limits are also examined. The result shows that rebars with diameter less than 16 mm is recommended for the improved fatigue behavior, and, for the deck slab with span length longer than 8 m, the deflection limit governs the minimum design thickness. The result also shows that, for the deck slab with span length longer than 4 m, the distribution rebar requirement in the current Korea Highway Bridge Design Code is not sufficient to maintain the structural continuity in bridge axis as expected from the deck slab with span length shorter than 3 m.

Aging Characteristics of Marketing Korean Paper(Hanji) (한국산 시판 한지의 열화 특성)

  • Park, Seong-Cheol;Choi, Mi-Sook;Lim, Hyun-A
    • Journal of Conservation Science
    • /
    • v.25 no.2
    • /
    • pp.161-169
    • /
    • 2009
  • The objective of this study was to investigate stability of Korean Paper(Hanji) which is being sold in the Korean markets according to aging treatment. In order to know the aging characteristics, the optical and mechanical properties of before and after wet and dry-heat aging treatment were examined. The optical and mechanical properties were shown higher reduction in the dry-heat aging treatment compared to the wet-heat aging treatment. The Soonji (pure mulberry Hanji) made from black mulberry bast pulp was shown a great reduction of the brightness and whiteness, and increase of the opacity in the aging treatment. On the other hand, in case of mechanical properties, the breaking length of Soonji made from white mulberry bast pulp was significantly higher than that of the others, and the tensile strength was shown drastic reduction in according to Soonji made from black mulberry bast pulp in the aging treatment. The burst strength of Soonji made from black and white mulberry bast pulp was shown the similar value in the wet-heat aging treatment. The folding endurance of Soonji made from white mulberry bast pulp was significantly higher than that of others before and after aging treatment. Consequently, Hanji was affected sensitive in the temperature compared to the humidity. Meanwhile, the density and color of the chinese ink was no significant changes before and after wet and dry-heat aging treatment.

  • PDF

Study on the Defect Improvement of Fuel Flow Proportioner Install Structure on Aircraft (항공기 연료흐름분배기 장착 구조물 결함개선 연구)

  • Choi, Hyoung Jun;Lee, Jin Won;Choi, Jae Ho;Park, Sung Jae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.4
    • /
    • pp.558-567
    • /
    • 2020
  • This study examined the defect characteristics of fuel flow proportioner-mounted structures to analyze the causes of structural defects during aircraft operation. System vibrations and single component vibrations that occur during aircraft operations are usually the cause of structural defects. The fuel flow proportioner causes a defect in the support structure due to the vibration caused by the pressure change caused by the sudden increase in the flow rate. Defects in the support structure of the fuel flow proportioner are not correlated directly with the cracking of the maneuver, and flight time according to aircraft operation analysis is related to the use of A/B. The structural reinforcement configuration was confirmed through static and life analysis of the cracks of the bracket mounted under the fuel flow proportioner for improvement of the defect. An analysis of the reinforcement revealed a minimum structural strength of +0.15. Structural life analysis confirmed that the stress acted on the site under 15Ksi. The fatigue life was confirmed to be more than 7,700 Cycles.

Effects of Recovery of Underwater Walking and Recovery of Underwater Sitting on Growth Hormone, Testosterone, Blood Lactate, Double product and Muscle Pain after Resistance Exercise (수중걷기회복과 수중앉기회복이 저항운동 후 성장호르몬, 테스토스테론, 혈중젖산농도, 심부담도 및 근통증에 미치는 영향)

  • Park, Jun-Sik;Jang, Tae-Soo;Jeong, Hwan-Jong;Kim, Ki-Hong
    • Journal of the Korean Applied Science and Technology
    • /
    • v.37 no.6
    • /
    • pp.1646-1658
    • /
    • 2020
  • In order to investigate the changes in growth hormone, testosterone, blood lactate, double product, and pain, this study conducted intensive weight training and circuit weight training with 60% intensity of 1RM for 7 men who had more than 6 months of resistance exercise and then performed Underwater Walking and Underwater Sitting with underwater recovery. Growth hormone was high in all exercise forms and recovery methods in order of after exercise, after recovery, and after stability, and testosterone was high in order of after exercise, after recovery, and stability. Blood lactate was higher in all exercise forms and recovery methods in order of after exercise, after recovery, and after stabilization, and dynamic recovery after concentration resistance exercise was lower than static recovery. Double product was higher in all types of exercise and recovery methods in order of after-exercise, after-recovery, and stability. Muscle pain decreased in the order of exercise, recovery, 24 hours, 48 hours, and 72 hours in all exercise forms and recovery methods. In the water environment, dynamic recovery is considered to be more effective in improving muscle fatigue than static recovery.

Development of Brake Disk Materials with Ni-Cr-Mo (Ni-Cr-Mo계 제동디스크 소재 개발)

  • Goo, Byeong-Choon;Lim, Choong-Hwan
    • Journal of the Korean Society for Railway
    • /
    • v.11 no.2
    • /
    • pp.188-194
    • /
    • 2008
  • Brake disks for rolling stock are exposed to thermal fatigue during braking, and thermal cracks occur on surface of disks. Thermal cracks can cause serious accidents, deterioration of braking performance and increase of maintenance cost due to frequent exchange of friction materials. In this study, candidate materials with high-heat resistance were selected by searching the literature. By using cast specimens made of the candidate materials, chemical composition, crystal structure and graphite type were analyzed. In addition, friction coefficient and wear were measured and compared with values for the disk material in service. As a result, it was shown that the NiCrMo has highest tensile strength and lowest friction coefficient and the disk material in service has the most stable friction characteristics.

Dynamic Instability of Submerged Floating Tunnels due to Tendon Slack (긴장재 느슨해짐에 따른 해중 터널의 동적 불안정 거동)

  • Won, Deok Hee;Kim, Seungjun
    • Journal of Korean Society of Steel Construction
    • /
    • v.29 no.6
    • /
    • pp.401-410
    • /
    • 2017
  • This study deals with dynamic instability of a tendon moored submerged floating tunnel (SFT) due to tendon slack. In general, environmental loadings such as wave and current govern SFT design. Especially, the wave force, whose amplitude and direction continuously change, directly induces the dynamic behavior of the SFT. The motion of the floating tube, induced by the wave force, leads dynamic response of the attached tendons and the dynamic change of internal forces of the tendons significantly affects to the fatigue design as well as the structural strength design. When the severe motion of the SFT occurs due to significant waves, tendons might lose their tension and slack so that the floating tube can be transiently instable. In this study, the characteristics of dynamic instability of the SFT due to tendon slack are investigated performing hydrodynamic analysis. In addition, the effects of draft, buoyancy-weight ratio, and tendon inclination on tendon slack and dynamic instability behavior are analytically investigated.

The Effect of Graded Exercise-Induced Fatigue on Position Sense of the Knee (근피로를 유발하는 운동강도 변화가 슬관절의 위치감각 인지에 미치는 영향)

  • Yi, Chung-Hwi;Choi, Jong-Duk;Lee, Kang-Noh;Lee, Dong-Ryul;Choi, Jae-Myung
    • Physical Therapy Korea
    • /
    • v.6 no.3
    • /
    • pp.22-37
    • /
    • 1999
  • It was recently reported that exercise-induced fatigue is related to joint position sense although some controversy remains. The purposes of this study were to examine the effect on the accuracy of reproducing the knee angles after a fatiguing isokinetic quadriceps exercise at four different levels (10%, 30%, 50%, and 70% of maximal force) and to find the optimal exercise level without causing knee joint proprioception impairment. Forty healthy women, ages 19 to 27, were randomly assigned to four experimental groups. Before and after the exercise, accuracy of positioning with respect to auditory feedback for specific angles was estimated by calculating the mean errors between specific angles and reproduction angles. Fatigue was measured by EMG signals displayed by a frequency spectrum analysis during the quadriceps exercise. Results showed that there was no significant difference in accuracy of the knee joint positioning sense following the exercises in group 1, group 2, and group 3 (10%, 30%, and 50% of maximal force, respectively); the exception being group 4 (70%). Fatigue level was significantly increased in group 4 but there were no significant increases of fatigue level in group 1, group 2, or group 3. The results concluded that the optimal exercise level to acquire the therapeutic exercise effectiveness without position sense impairment was at 50% of maximal force. Further studies using large sample size and patient groups with poor knee joint proprioception would be needed to confirm this conclusion and to clarify the possibility of clinical applications.

  • PDF

Effect of Strain Rate and Material Hardness on Residual Stress in Multiple Impact Shot Peening (다중충돌 쇼트피닝에서 변형률 속도와 소재 경도가 잔류응력에 미치는 영향에 관한 연구)

  • Kim, Tae-Woo;Yang, Zhao-Rui;Na, Doo-Hyun;Lee, Young-Seog
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.11
    • /
    • pp.1369-1375
    • /
    • 2011
  • Shot ball impacts to materials cause residual compressive stress on their surfaces. Improving the fatigue strength of a material that has this residual compress stress is the purpose of the shot peening process. A numerical study was performed to evaluate the effect of the strain rate sensitivity and hardness of the shot ball on the residual compressive stress. We calculated the residual compressive stress due to multiple impact shot peening using ABAQUS 6.9-1. AISI 4340 steel was the material used in this study. We compared the effects of high strain rate sensitivities and low strain rate sensitivities and found that when the material's sensitivity to the strain rate increased, the residual compressive stress decreased. In addition, the residual compressive stress of low-hardness material is higher than that of high-hardness material.

A Property of Crack Propagation at the Specimen of CFRP with Layer Angle (적층각도를 지닌 CFRP 시험편에서의 크랙전파 특성)

  • Hwang, Gue Wan;Cho, Jae Ung;Cho, Chong Du
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.12
    • /
    • pp.1013-1019
    • /
    • 2016
  • CFRP is the composite material manufactured by the hybrid resin on the basis of carbon fiber. As this material has the high specific strength and the light weight, it has been widely used at various fields. Particularly, the unidirectional carbon fiber can be applied with the layer angle. CFRP made with layer angle has the strength higher than with no layer angle. In this paper, the property of crack growth due to each layer angle was investigated on the crack propagation and fracture behavior of the CFRP compact tension specimen due to the change of layer angle. The value of maximum stress is shown to be decreased and the crack propagation is slowed down as the layer angle is increased. But the limit according to the layer angle is shown as the stress is increased again from the base point of the layer angle of $60^{\circ}$. This study result is thought to be utilized with the data which verify the probability of fatigue fracture when the defect inside the structure at using CFRP of mechanical structure happens.